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Foreword

HE tremendous research and development effort that went into the

development of radar and related techniques during World War II
resulted not only in hundreds of radar sets for military (and some for
possible peacetime) use but also in a great body of information and new
techniques in the electronics and high-frequency fields. Because this
basic material may be of great value to science and engineering, it seemed
most important to publish it as soon as security permitted.

The Radiation Laboratory of MIT, which operated under the super-
vision of the National Defense Research Committee, undertook the great
task of preparing these volumes. The work deseribed herein, however, is
the collective result of work done at many laboratories, Army, Navy,
university, and industrial, both in this country and in England, Canada,
and other Dominions.

The Radiation Laboratory, once its proposals were approved and
finances provided by the Office of Scientific Research and Development,
chose Louis N. Ridenour as Editor-in-Chief to lead and direct the entire
project. An editorial staff was then selected of those best qualified for
this type of task. Finally the authors for the various volumes or chapters
or sections were chosen from among those experts who were intimately
familiar with the various fields, and who were able and willing to write
the summaries of them. This entire staff agreed to remain at work at
MIT for six months or more after the work of the Radiation Laboratory
was complete. These volumes stand as a monument to this group.

These volumes serve as a memorial to the unnamed hundreds and
thousands of other scientists, engineers, and others who actually carried
on the research, development, and engineering work the results of which
are herein described. There were so many involved in this work and they
worked so closely together even though often in widely separated labora-
tories that it is impossible to name or even to know those who contributed
to a particular idea or development. Only certain ones who wrote reports
or articles have even been mentioned. But to all those who contributed
in any way to this great cooperative development enterprise, both in this
country and in England, these volumes are dedicated.

L. A. DuBriIDGE.







Preface

ooN after Drs. I. I. Rabi and L. A. DuBridge decided that the tech-

nical knowledge of the Radiation Laboratory staff should be pre-
served, 1t was evident that at least one complete book would be required
on lumped-parameter circuits. The early planning for that book was
done during a series of conferences called by L. J. Hawworth, and attended
by B. Chance and G. E. Valley, Jr.

It was difficult to arrange all the subject matter in a way that would be
easy to read and economical of space. It would have been possible to
describe the various electrical devices in order, but to describe each
instrument completely would have involved an intolerable amount of
repetition concerning basic circuits, such as multivibrators and ampli-
fiers. It would also have required an intolerable amount of cross-
indexing if the work were to be usable by those interested, not in the
particular instruments described, but in the application of their design
principles to completely different problems. It was apparent, too, that
the work should not stress radar.

The material was therefore divided into two parts: the first part to
include the basic principles of circuit design, the second to pertain to the
assembly of basic circuits into functional instruments such as receivers
and data display systems. These decisions were made in the interests of
clarity and brevity. Even so, upon completion of the consequent
outline, it was evident that several volumes would be required. Accord-
ingly new outlines were prepared for each of these and were then revised
separately for each volume by committees composed of the editors and
authors concerned.

The first of these books, Components Handbook, discusses the physical
embodiments of the lumped-parameters themselves: resistors, cables,
motors, vacuum tubes, etc. Next, Vacuum Tube Amplifiers and Wave-
forms discuss the principles of circuit design, respectively, for circuits that
are essentially linear (amplifiers) and for circuits that are essentially
nonlinear (oscillators, electronic switches, and the like). The four
following volumes concern themselves with the design of complex func-
tional devices. They are Electronic Time Measurements, Electronic
Instruments, Cathode Ray Tube Displays, and Microwave Receivers.

The amplifiers discussed in this volume are designed to have extreme
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values in one of several of the pertinent characteristics: bandwidth,
sensitivity, linearity, constancy of gain over long periods of time, etc.
In most cases the design of such amplifiers, in which the ultimate per-
formance is obtained from available types of components, cannot be
carried out by simple rules of thumb.

The volume therefore begins with a chapter on ‘“Linear Analysis and
Transient Response’” which lays the theoretical basis for the high-fidelity
reproduction of transient signals, such as rectangular pulses. Although
the chapter is rather theoretical, a summary is contained in Sec. 1-10 of
the precise steps needed to determine the transient response of a given
network. The practical application of these principles is examined in the
next chapter, ‘‘High-fidelity Pulse Amplifiers,” for direct, or ‘‘video,”
pulses. The resemblance of this material to that contained in Chap. 3
is only superficial; ‘‘ Pulse Amplifiers of Large Dynamic Range’ is about
the design of amplifiers intended to deal with pulses of widely varying
magnitude, all other characteristics being secondary. Chapters 4 through
7 deal with the theoretical and practical aspects of several methods of
amplifying, with varying degrees of fidelity, pulse-modulated carrier fre-
quencies as high as 200 Mec/sec. Although the design principles are
examined in these chapters chiefly from the standpoint of relatively high
frequencies, they are perfectly general in their application. That this is
true is exemplified by Chap. 10, “Low-frequency Feedback Amplifiers,”
wherein some of the results of Chap. 4 are applied to filter amplifiers oper-
ating at frequencies as low as 50 cps.

Chapter 8 deals with the examination and adjustment of the amplifiers
previously described, especially when they are employed as intermediate
frequency amplifiers in superheterodyne receivers. Chapter 9 discusses
some of the innumerable ways in which inverse feedback can be employed
to stabilize the gain of an amplifier. The well-known principles of
Nyquist, Bode, and others are applied particularly to circuits in which
inductances do not appear, and use is made of this fact to simplify the
analysis; in addition the chapter describes the successively less approxi-
mate phases through which the design of such an amplifier can proceed.
Chapter 11 recounts the experience at the Radiation Laboratory concern-
ing the design of rugged and reliable direct-coupled amplifiers, no par-
ticular emphasis being placed upon extreme sensitivity.

Chapter 12, ““ Amplifier Sensitivity,” examines the subject of noise
in a rigorous and very theoretical manner. The design of amplifiers for
best signal-to-noise ratio is discussed in Chap. 13, ‘ Minimal-noise Input
Cireuits,” and in Chap. 14 the experimental measurement of amplifier
sensitivity is explained.

Appendix A contains an existence theorem on the physical realizability
of filter amplitude characteristies.
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In addition to the material contained in this volume, information
concerning the application of amplifiers to specific purposes will be found
in other volumes. In particular the use of amplifiers in computers and
servomechanisms is discussed in FElectronic Instruments. In Cath-
ode Ray Tube Displays is included a chapter devoted to amplifiers
gpecifically designed to drive inductive loads (i.e., cathode-ray tube
deflection coils). Microwave Receivers contains a good deal of infor-
mation on the use in microwave receivers of the types of amplifier
described in Chaps. 3 through 7. It also contains a discussion of the
noise problem as it affects superheterodyne receiving systems.

The editors wish to acknowledge the inspiration and guidance of
the Editor-in-Chief, 1. N. Ridenour, and of his editorial board. This
book is the product of a large organization, much of the credit for whose
successful operation goes to Charles Newton and his able assistants
Dr. V. Josephson, M. Dolbeare, and M. Phillips. Whatever uniformity
of style and format the book may present is largely due to the Technical
Coordination Group operating under the direction of Drs. L. B. Linford
and A. M. Stone. To the authors, the editors extend their thanks for a
task conscientiously performed and their congratulations upon its com-
pletion. The assistance of Mr. J. H. Irving in furnishing important back-
ground material for Chap. 1 is gratefully acknowledged. It is due to the
generosity of the British Air Commission that Mr. R. Q. Twiss was able
to work on the several important chapters that bear his name.

The preparation of the illustrations for the volume was ably supervised
by Martha Murrell. The timely assistance of Margot Cheney and Beka
Hepner resulted in the volume’s being prepared within the allotted time.
It was the task of Doris Williams to type over the most illegible of the
original manuscript.

Tae EbprTors.

CAMBRIDGE, Mass.,
July, 1946,
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CHAPTER 1
LINEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE

By Ricmarp Q. Twiss

1-1. Introduction.—The purpose of this chapter is to provide a sys-
tematic procedure for finding the response of a linear network to an
applied signal under arbitrary initial conditions. The mathematical
machinery used in deriving this procedure is based upon the Laplace
transform.!

The Laplace transform analysis is not the only method that has been
used to solve linear network problems; and because some of its present-
day aspects have been influenced by earlier work, a short historical
discussion will be given.

Long before the first statement of Kirchhoff’s laws or the development
of linear-network analysis, Laplace had used transform theory to solve
differential equations while Cauchy had employed the Fourier transform
as the theoretical basis for an operational calculus. However, in the
early treatment of the linear network by Clerk Maxwell, the classic
theory of linear-differential equations was used. This method provides
a solution in the form of the sum of a “particular integral” and the
“complementary function,” the latter containing a number of arbitrary
constants that have to be determined, from the initial conditions, by an
auxiliary set of equations.

This treatment can be made entirely rigorous if the scope of applica-
tion is sufficiently restricted, and it is still used in elementary textbooks.
Unfortunately it is cumbersome in application, particularly when there
are a large number of arbitrary constants to be determined. It was
largely the search for a compact and simple solution that led Oliver
Heaviside to develop the attack usually referred to as the Heaviside
operational calculus. Heaviside himself was either ignorant of or
indifferent to the work of his predecessors, and his system was presented
a8 & set of disconnected and arbitrary rules which did, in fact, solve a
wide range of problems with & minimum of computation but which
totally lacked a valid theoretical basis.

The wide application of linear-differential equations in physics and
engineering, the fact that Heaviside's calculus (as it stands) is applicable

' For an excellent genersl reference see M. F. Gardner and J. L. Barnes, Transienia
on Lincar Systems, Wiley, New York, 1942,
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only to the case where the initial electrostatic and magnetic energy in the
cireuit is zero, and the desire to furnish a rigorous mathematical founda-
tion led a whole army of workers, most of whom appeared equally
ignorant of Cauchy’s original work, into this field; it was not until a vast
contribution to the theory of the operational calculus had been made that
1t was realized that this calculus is intimately related to the theory of the
Laplace transform and that a proof of all Heaviside’s results can be
provided on the functional transform basis.

This result naturally suggested the question as to whether or not the
direct application of the Laplace transform theory could provide a solu-
tion as simple and compact as that given by the operational calculus, but
wider in application and completely rigorous and systematic in method.
This question has now been answered in the affirmative; hence it can be
expected that the Heaviside calculus will drop into desuetude and will
be replaced by the transform analysis.

At the same time as the operational calculus was being investigated
and extended, other writers were using the Fourier series and Fourier
integral to derive the response of a network to an applied signal from its
steady-state response. This line of approach, at least in its elementary
form, is less powerful than the Heaviside calculus and is also directly
applicable only to the case in which the initial electrostatic and magnetic
energy in the network is zero. When the method is extended to over-
come these disadvantages, it becomes virtually equivalent to the Laplace
transform method. It is shown in Sec. 1-9 that both these methods can
be regarded as special cases of the general transform theory in the complex
plane.

It must be emphasized that in this chapter the mathematical machin-
ery is regarded merely as scaffolding, as much as possible of which is to
be dispensed with as soon as the fundamental form of the general solution
has been found. Accordingly, only the most important results of the
theory are proved, the auxiliary theorems being stated without justifica-
tion, and no attempt is made to discuss those aspects of the Laplace
transform theory which do not bear directly upon the linear-network
problem.

Instead, emphasis is placed upon the methods for setting up the
network equations, illustrated by practical examples. In Sec. 12 a
condensed account is given of the basic properties of linear networks.
In Bec. 1-3 the integro-differential equations for several practical net-
works are derived, the results extended to the general case, and the mesh
and nodal methods of setting up those equations are compared. In
Sec. 1-4, which contains all the fundamental mathematical theory, the
concept of the Laplace transform is introduced, its principal properties
derived, and its ability to transform a set of differential equations into a
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set of algebraic equations is illustrated for the case of the nth-order
equation in a single independent variable. The inverse Laplace trans-
form is then derived and used to complete the solution of the nth-order
equation. The section terminates with a discussion of the convolution
theorem and its application to network analysis. The theory is then
applied to the equations of Sec. 1-3; the general solution is derived; and its
form discussed.

It is at this stage that the concept of the ‘“transform network” is
introduced. This concept can often be of great help in solving practical
problems; and because its use is not widespread, it is treated very fully.
It might be regarded as a mistake in emphasis to attach such prominence
to what is, in essence, merely a mechanism for shortening a part of the
analysis, but this view can be countered by two powerful arguments.
In the first place the most difficult and least standardized part of network
analysis is the setting up of the transform equations. Once these equa~
tions have been derived, a condensed procedure can be followed that is
always the same whatever the particular problem to be solved. Secondly,
the transform equations can be derived from the transform network
by the conventional methods of the steady-state analysis without
introducing the integro-differential equations at all. Thus the use of
the transform network not only shortens the analysis but greatly sim-
plifies it as well.

The standard procedure for solving network problems is summarized
in Sec. 1-11; and in Sec. 112 this procedure is applied to derive the com-
plete solution of two practical examples.

The chapter also contains a section on the Fourier transform theory,
the merits of which are compared with those of the Laplace transform.

1.2. The Basic Properties of Linear Networks.—Most of the concepts
introduced in this section will already be familiar to the reader acquainted
with the conventional steady-state network analysis. Reference can be
made to any of the standard textbooks and in particular to Gardner and
Barnes Transients in Linear Systems for a detailed discussion.!

The Class of Networks Considered.—The networks considered in this
chapter are composed partly of lumped passive elements (inductors,
capacitors, and resistors) and partly of active elements (voltage and
current generators). These active elements are not physical entities but
mathematical idealizations; in practice active networks will contain not
pure generators but vacuum tubes. However, it is assumed that all the
vacuum tubes treated in this analysis ~an be completely represented by a
three-terminal network consisting of lumped-passive elements together
with voltage and current generators.

1 The whole of the treatment of this section follows along lines similar to those
adopted by M. F. Gardner and J. L. Barnes, op. cit.
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[Sec. 1-2

All the elements, both passive and active, are assumed to be linear
(thus ensuring that the superposition principle can be applied) and
invariant with time.

The Network Elements.—The integro-differential equations relating
the voltage across a passive element to the current through it are set out

in Table 1-1.
TABLE 1-1.—PASSIVE-ELEMENT REPRESENTATION
Element S[)::]‘- Impedance basis Admittance basis
di . X ¢
vi(l) = L% ir(t) =4r(0+) 4+ I ‘/; vr(t) dt,
Inductor where L is the self inductance { where T is the inverse self in-

of the element, L = 1!

ductance of the element,
r=1L"

¢, . d
vs(®) = vs0+) + 8 [ ist0) oty = ¢ 220,
Capacitor where 8 is the elastance of the | where C is the capacitance of the
T element, § = C-! element, C = §—1
vr(l) = Rig(l), 10(t) = Gue(t),
Resistor where R is the resistance of the | where G is the conductance of the
element, B = G-} element, ¢ = R-1
Nore 1. The values ir(0+) and v3(0+) are the limiting values of ir(l) and pa(l) respectively as ¢

decreases toward zero,
Nore 2. The parameters L, S, R, I, C, @ are descriptive of the element only and are independent
of the time or of the magnitude of the voltage across the element.

It will be shown later in this section that there are two fundamental
methods of deriving the basic equations: One uses the concepts voltage
generator, impedance, and mesh; the other uses the concepts current
generator, admittances, and node; and it is for this reason that in one
column of Table 1-1 the voltage-current relation has been set out on an
impedance basis and in the neighboring column on an admittance basis.

In the special case in which »(¢) and #(¢) are exponential functions of
the time, V(p) exp pi and I(p) exp p! respectively,
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::ég =Lp, i) = Ep[ir(0+) =0),

2% = a0 ) =0,

ve(t) _ R a(t) _

12() ! ve(t) ’
and the ratios Lp, S/p, R, are called p impedances; I'/p, Cp, G, are callec,
p-admittances. - In the particular case where p = jw is purely imaginary,
the ratios are simply called impedances and admittances and are the
familiar steady-state concepts.

The main properties of the active elements are set out in Table 1-2.

TABLE 1.2.—ACTIVE-ELEMENT REPRESENTATION

Element Symbol Internal impedance | Internal admittance
Voltage source A Zero Infinite
vl
Current source Infinite Zero
1)

Voltage-current Source Transformation.—In the mesh analysis it is
desirable that all the sources be voltage generators, but in the nodal
analysis it is desirable that all the sources be current generators. In
many cases it will be possible to achieve this state of affairs with the aid
of one or the other of the transformations set out in Table 1-3.1

In the steady-state case when v(f) and i(f) are exponential functions
of the time V(p) exp pt and I(p) exp pt respectively, these transformations
are all special cases of the general transformations of Fig. 1-1 where Z(p)
and Y (p) are p-impedances and p-admittances respectively related by the
equations

1
2@ = iy
V(p) = Z(p)I(p),

1 For a proof of these transformations see Gardner and Barnes, op. cit. p. 23.



TaBLE 1-3.—VOLTAGE-CURRENT EQUIVALENCES

Voltage generator

Current generator

R o(l) = Ri(®), i) = Gu(t),
where R = G! where G = R™!
+
v () S, G
¢ du(t
o) = 8 j; i) dt, 1 = ¢ 2,
where § = C~! and Q is the initial charge + where C = S-1 and Q is the initial charge
on the condenser i® Q==C o©n the condenser

di(t)
v(t) = L T’

where L = I'"! and 1 is the initial current
through the inductor

i) = ﬁ) ‘ot) dt,

where I' = L~ and 1, is the initial current
through the inductor

%1 °088] ASNOISAY INAISNVYL ANV SISATVNVY ZINJYIDHVANIT 9
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where V(p) and I(p) are constant-voltage and constant-current p-gen-
erators respectively.

This general transformation can be used when deriving the transform
equations from the transform network, but it cannot be used directly
when setting up the integro-differential equations.

I

+

oF ? (D

b

p) l

F1a. 1-1.—Voltage-current source equivalence.

Mutual Inductance—Mutual inductance is not an element of a net-
work in the sense discussed above; but, since the presence of magnetic
coupling between the various inductances of the network affects the form
of the network equations, this concept must be introduced.

A full discussion of mutual inductance will be found in all the stand-
ard textbooks on electromagnetism.!

Consider the simple transformer of Fig. 1-2, where the two inductances
L, and L, are coupled together by

mutual inductance M. 1
If the inductor L. is open cir- M
cuited so that 7; = 0, the voltage 2
across 2-2 is + M diy/dt. Similarly iz
if L, is open circuited, the voltage .
across the terminals 1-1is + M di,/dt. . N1 »

The ambiguity of sign is resolved as L L
o 2
follows: If a positive rate-of-change
of 7, induces in Circuit 1 a voltage
drop in the arrow direction, the sign is positive; if a voltage rise is induced,
the sign is negative.
More generally if a coil L; is coupled by mutual inductances M, toa
system of coils Ly(j # k, £k = 1, -+ - - , n), then the open-circuit voltage
across the coil L; 1s

F1a. 1:2.—Mutual-inductance coupling.

1 M. Abraham and R. Becker, Classical Electricity and Magnetism, Blackie,
Glasgow, 1932; Sir James Jeans, Mathematical Theory of Electricity and Magnetism,
4th ed., Cambridge, London, 1923.
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div g din o, g din

iMJ'I.'&T— iﬁﬂ—- punt inTi?’

where the signs of the various terms are determined by the rule above.

The Network Structure—In setting up the basic equations such con-

cepts as node, branch, mesh, etc., will be used, and in comparing the
merits of the mesh and nodal analysis, it is necessary to

enumerate the number of independent node pairs and

I meshes. Because different writers have given these terms

Fie. 13— Gifferent meanings, it seems desirable to remove the possi-
Universal ele-  bility of ambiguity by defining them here. The notation
ment symbol.  yged js similar to that of Gardner and Barnes (loc. cit.),
but a few minor changes, intended to bring out the difference between the
steady-state and the transient analysis, have been made.

Such terms as ‘““node’” and ‘“mesh” are primarily geometrical and
do not depend upon the detailed nature of the elements making up the
network. Accordingly the symbol of Fig. 1:3 will be used to represent
any of the five basic elements (three passive and two active) whenever
this appears desirable in the interests of clarity.

The various terms descriptive of the network structure will now be
defined.

1. Terminal. The end points of an element are called its terminals.
2. Node. The junction point of two or more terminals is called a node.
The junction point of no more than two terminals is called a simple

¢- node
-~

s-node

-g— 8- 70de
(@ ®

Fia. 1-4.—Network geometry I.

node or s-node. The junction point of more than two terminals is
called a compler node or ¢c-node. The network in Fig. 1-4a has
three s-nodes; the network in Fig. 1-4b has three s-nodes and two c-
nodes.

3. Branch. The series connection of elements, none of whose internal
nodes is a c-node, is called a closed branch if the series connection is
closed in an s-node or c-node and an open branch if the end points
of the branch are both c-nodes. Examples of both closed and
open branches are shown in Fig. 1-5.
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4. Mesh. Any closed path via one or more branches in series forms a
mesh. A closed branch is a special case of a mesh.

5. Separable part. A part of
the network having only
mutual inductive coupling
with the rest of the network
is called a separable part.
Thus the network of Fig. 16,
which has four c-nodes, two
s-nodes, six open branches,
and one closed branch, hag ©losed branch
three separable parts. Open branch

6. Reference node. One node Fia. 1.5.—Network geometry II.
of each separable part of a network is called the reference node of
that part. The choice of reference node is arbitrary.

7. Independent node pair. The combination of the reference node
with any other node of the same separable part is called an inde-
pendent node pair.

¢-hode

¢~ node

It
113

(1
MW

N

i

1t

F16. 1-6.—Network with three separable parts.

It is clear from the above definitions that if N is the total number of
nodes in the network, P the number of separable parts of the network, and
N> the number of independent node-pairs, then

NP=N_P.

Another most important result, which can be proved by topological
methods,? is that M, the number of independent meshes, is given by

M =E— Np,

where E is the number of elements in the network. A heuristic proof of
this result is given in Sec. 1-3.

It remains only to discuss the reason for dividing the nodes into s- and
c-nodes. Inthe elementary steady-state analysis s-nodes are not regarded
as nodes at all. The condition that no charge accumulate at any point of
the network will be satisfied automatically at an s-node if it is assumed
that the instantaneous current flowing in any element of a branch is equal
to that flowing in any other element of the same branch. The impedance

1 See M. F. Gardner and J. L. Barnes, op. cit., for a bibliography of papers on this
subject.
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or admittance of a branch can then be written down by inspection. This
cannot be done, however, when the integro-differential equations for the
network are being set up.

The point will become clearer after the concept of the transform net-
work has been introduced, when it will appear that an s-node can be
neglected only if the initial potential of the node is zero and if the initial
currents flowing into it from inductors are zero.!

1.3. The Integro-differential Equations of the Linear Network.—It
was pointed out in the introduction that the solution of practical problems
is effected by deriving the trans orm equations from the transform net-
work? so that the integro-differential equations are not formulated
directly. Nevertheless the methods of setting up these integro-differen-
tial equations are discussed in some detail and illustrated with several
examples in this section. This course of action is followed for two reasons.
In the first place the transform network can be employed with confidence
only when the theory underlying it is fully understood, and this theory can
be developed only from the integro-differential equations themselves.
Second, the method of setting up the transform equations from the trans-
form network is very similar in form, though more powerful in scope, to
the methods of setting up the integro-differential equations from the
original network.

The examples given in this section are not necessarily practical net-
works; they have rather been chosen to demonstrate some particular point
of the theory. This is not true, however, of the examples given at the
end of this chapter, which are selected to illustrate the power of the
method in solving practical problems.

Kirchhoff's Laws and the Mesh-nodal Analysis~—Kirchhoff’s laws,
which are the fundamental basis for the whole of network theory, can be
stated as follows:

Law 1. The total voltage drop around any mesh of the cireuit is zero.
Law 2. The total instantaneous current flowing into any node of the
network is zero.

The basic equations can be obtained by applying these laws to every
branch and node of the network, but this is usually an excessively clumsy
procedure. A much shorter analysis can be obtained from the so-called
“mesh-nodal analysis’’ which will now be described.

It may be emphasized here that Kirchhoff’s laws apply to both linear
and nonlinear cireuits, but the mesh-nodal analysis can be applied only to
the former.

1 7t will be shown that only under these eircumstances will an s-node in the original

network transform into an s-pode in the transform network.
? See Sec. 1-7.
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In the mesh method all current sources are replaced by voltage
sources,! and the variables are the M currents flowing in the M inde-
pendent meshes. This system automatically satisfies Kirchhoff’s second
law at every node, because as much current flows into any node as flows
out of it. M independent equations are obtained by applying Kirch-
hoff’s first law to the M independent meshes in turn, thus determining the
system.

In the nodal analysis all voltage sources are replaced by current
sources. If the network has N nodes and P separable parts, the variables
are the N — P voltage differences across the N — P independent node
pairs. N — P independent equations are obtained? by applying Kirch-
hoff’s second law to every node of the network in turn, thus determining
the system. )

Before the mesh-nodal analysis is applied to a few typical network
structures, a heuristic proof will be given of the formula stated in Sec. 1-2
relating the number of independent meshes to the number of elements and
nodes in the network.

Let E be the number of elements, P the number of separable parts, and
N the number of nodes. Then there will be E equations relating the
currents flowing in the elements to the potentials across them, and N — P
equations obtained by applying Kirchhoff’s second law to every inde-
pendent node pair in turn. These N — P equations determine N — P of
the currents in terms of the others; hence if the analysis is set up on the
mesh basis, £ — (N — P) equations will be needed to determine the
unknowns, and this is therefore the number of independent meshes.

It may be observed that the mesh analysis will require fewer equations
than the nodal if £ < 2(N — P).

The Mesh Analysis and Erxamples—In general the mesh equations
may be set up in a large number of ways, subject only to the two provisos:

There are E — N + P mesh equations.

Every element of the network is included in at least one mesh.

The actual choice will depend upon which voltage or current is to be
calculated. Usually 1t is required to find the voltage across a single
element or branch of the network when an arbitrary signal is
applied across some part of the network. If this is the case, it will
be best to set up the mesh analysis in such a way that this element
or branch is contained in only one mesh. In the general theoretical
case, of course, where the solution for every current and voltage in
the network is required, one choice of the independent mesh system
is as good as another.

1 By one of the transformations of Table 1-3.

?Not N equations. If Kirchhoff’s second law is satisfied at all but one of the
nodes of a separable part, it will automatically, be satisfied at the remaining node.
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Two-mesh Network.—As a first example, consider the network of Fig.
1:7. Initially it will be supposed that the condensers have charges @,
Q12, Q:, respectively, and that currents p;, p, are flowing in coils L;, L; in
the directions indicated. It will be assumed that the inductances are
coupled by mutual inductance M and are wound in phase. This network
has one separable part, eight elements, and seven nodes; hence there are
two independent meshes. The mesh system of Fig. 17 is the natural one
to take if the voltage across R, is to be determined. Had the voltage
across S;2 been of primary interest it would have been better to have
taken the mesh system of Fig. 1-8.

M
R, 5 Ly — L2 ]
= FRARS
QTP | TP q,
m + /\
+ 1 __le ":z R
ST~
e 12T~ 2
Fia. 1:7.—Two-mesh network. Fia. 1-8.—Alternative two-mesh network.

If Kirchhoff’s first law is applied to the first mesh of Fig. 11 and the
results given in Table 1-1 are utilized, one gets
diy

¢ .
e(t) = Rt + QuS1 + Sy f drdr + L% % 4 0,8,
0 di dt

¢
+ S fo (i1 — 7o) dr;
applying the law to the second mesh gives
P di
0= —QmSw - S / (h - 22) dr + Lz—dE;
0
diy
dt

Collecting similar terms and transposing the equations gives

3

+ Q8: + 82 f 12 dr 4+ Raie.

0

-M

e(t) — QiS1 — QuSn = [Rx + Lladi
¢ ¢
+ (S1 + Su,) / dT] 1:1 —_ [Mg— +Slz/ d‘T] ’I:g,
0 t 0
d t
—~ QuSi1z — @8, = — (M(ﬁ 4+ Si2 / d‘r) 1
0

¢
tretrndr @it o]
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Two of the initial conditions (the total voltage drop around the con-
densers in the two meshes) have already been included in the equations;
the two remaining conditions are

11(0) = py, 13(0) = pa.

If the following integro-differential operators are defined,

211

t
Ry + (8 + Su) f dr+1, %
0 t

d t
212 '—M 5 Slz / dT,

dat 0

p . 1)
—Mgt' - Slz [ dT,

J 0o

(]

221

¢
d
222 = B2 + (Se + S12) /; dr + L. ar
and if 4,(0) = Q1S:1 + Q12812 is the initial voltage drop around the first
mesh in a clockwise direction and if uw2(0) = —@Q13812 + Q=8. is the
initial voltage drop around the second mesh in a clockwise direction, then
the equations can be put in the condensed form

e(t) — ua(0) = z1101(1) + 2120a(t), } @)
—us(0) = 22101 () + 229t2(t),
where
1(0) = py and 12(0) = p2. 3)

It will be noted that zy3 = ze;. This is a characteristic of all passive
networks.

In normal network parlance e;(f) is called the driving function, and
i1(f) and Z.(¢) are called the response functions.

The General Mesh Equations for the Passive Network.—The discussion
in the first example was made as general as possible so that the develop-
ment of the general case would not be too abstract when the condensed
notation, defined below, is employed.

Let Lj;, Rij, S;; be the total self-inductance, resistance, and elastance,
respectively, in mesh j.

Let L, R, Six be the total self- and mutual inductance, resistance,
and elastance, respectively, common to meshes j and £.

Let e;(¢) be the driving voltage in mesh 7.

Let u;(0) be the total initial voltage drop around the elastances in
mesh 7, in a clockwise direction.

Let ¢,(¢) be the current flowing in the jth mesh in a clockwise direction.
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Let
d t
2 = Ly at Ry 4+ 85 / dr.
0
Let

[

Zjp = _Lik% — Rp — S _/;) dr.

Then z; is the total impedance in the jth mesh and —z; is the
impedance common to the jth and kth meshes. If Kirchhoff’s first law

o

|
|

QN

Ok

&
N
-

{a) 1}
Fic. 1-9.—Equivalent circuit for a tube.

is applied to each of the n independent meshes in turn, the following
system of equations results.

ei(t) — u;(0) = Z;x2(t) G=1---,n), 4

where 2z;; = 2;;. Of the initial conditions n are already included in the
equations. The remaining n are given by the initial values of 7;(f)
G=1--:,n).

It will be seen that Eqgs. (2) are a special case of Eqs. (4) when n = 2
and ex(t) = 0.

The General Mesh Equations for the Active Network.—In this chapter
attention will be confined to the case where the three-terminal vacuum-
tube network of Fig. 1-9a can be replaced by the equivalent network of
Fig. 1-9b.

To demonstrate the modification produced in the network equations
when vacuum tubes are present, let it be supposed that the grid-cathode
circuit impedance operator

¢
Z,‘——‘-L,dt+R,+S,/;d‘r
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pertains to the jth circuit and that the anode-cathode path is in the kth

circuit.
Then application of Kirchhoff’s first law to the kth circuit gives

Zutt + Ziatz + 0 0 0 it bt 0 0t Zkate = e(l) — ueg;
and since e, = z,7;, this equation can be written
2t + Zwoie + - 0 0+ (2 + B2)t + 0+ Zela = e(t);

thus the general form of the active network equations are the same as
those of the passive network save that it is no longer possible to assume

Ziy = Zgj.

The Nodal Analysis and Examples.—The nodal analysis is less widely
used than the mesh analysis. However, in many cases, particularly for

+ . +
it O 11% G;§ ng Fzé C= Q2
14 ts

Fig. 1-10.—Two-node network.

active networks, it is much more convenient, as the succeeding examples
show.

Two-node Network.—Consider the network of Fig. 1-10, where the
condensers C,, C; initially carry charges @i, @: and where initial currents
p1, P12, p2 flow in the inverse inductances I'y, T'1z, I'z in the directions
shown in the figure. This network has one separable part, three nodes,
and nine branches; hence in the mesh analysis seven equations would be
needed to determine the system. But th s network has only two inde-
pendent node pairs, whose voltages may be taken as e;(t), es(f), the
grounded node being taken as the reference node. If Kirchhoff’s second
law is applied to these two nodes in succession and if the results given in
Table 1-1 are utilized, one gets

t ¢
i(t) = Cl%el + I ﬁ erdr — py + Grey + T2 /; (er — e2) dr + pa,

d t t
0=Czaezﬂ-r:/;esz—P2+Gzez+1‘12ﬁ(ez—el)d‘f—pn;
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collecting similar terms and transposing the equations one gets

1 ¢
’L(t) + p1L ™ Pz = [01% + Gl + (Fl + P;z) ﬁ d‘r] € — (F;z L d‘r) €3,

t d ¢
p2 + p1z = “(Fmﬁd‘r>e1+[rza“t+gz+(Fn"!-rm) odr €.
If the following integro-differential operators be defined

[} ]
Y11 = Cxad—t + G + (F1 + sz) / d‘f, yiz = — T / d‘l',
0 0

¢ ¢
yo1 = —TI12 f dr, Yoz = ng}’ 4+ Gy + (T2 + T1a) [ dr,
o £ h}

and if §:(0) = +p; — p1z is the initial current in the inductances flowing
into the first node and if j»(0) = +(ps 4 p12) is the initial current in the
inductances flowing into the second node, then the equations can be put
in the condensed form

11(6) + 7:(0) = yuelt) 4 yize2(t), } (5)
+32(0) = ynei(t) 4+ yazea(t),
where

61(0} = g‘:l 81(0) Qi!

Tn this case 7,(t) is called the driving function, and e:(t), e=(¢) the response
functions.

Ly L, ~-M?
M

L Lz "Mz L‘l Lz "ﬂl2
L2+M ¥

(4 ()

Fia. 1-11.—~Transformer equivalent networks.

Mutual Inductance in the Nodal Analysis.—In general where mutual
inductance is present it is better to employ the mesh analysis. In the
case where the d-c levels of the various parts of the network are not of
interest it is possible, however, to replace a transformer by its equivalent
T- or I-network. Thus except for their d-¢ characteristics the three
networks of Fig. 1-11a, b, ¢ are equivalent. The number of independent
node pairs is not increased by this transformation because, provided the
d-c characteristics are not important, the reference nodes for the various
separable parts can be taken as coincident. Thus, although the number
of separable parts in the nodal analysis is always reduced from P to 1 by
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this transformation, the number of nodesis reduced from NtoN — P + 1,
and hence there are still N — P independent node pairs.

To illustrate the above discussion by a practical example, consider the
network of Fig. 1-12.

Since this network as it stands has two separable parts, seven ele-
ments, and five nodes, there are
no less than four independent
meshes, and four equations would
be needed to describe the network *

L,% .

R,

on the mesh basis. If, however, vy 5 =s, R
the voltage generator is replaced < i ?
by the equivalent current genera-
tor and the transformer is replaced
by its equivalent II-network, the
network assumes the general form
of Fig. 1-10, which, as has already been shown, can be described on the
nodal basis by only two equations.

Two-node Active Network.—The chief importance of the nodal analysis
lies in the fact that it is especially suitable for application to active net-

Fi1e. 1-12,—Mutual-inductance-coupled net-
work.

Fi1a. 1:13.—Two-node active network.
C,

e, 1 ) e, )
I -- . : it __I_
) i G2
L L ¢
2 u)l it r, G, ==C, G, ==C, r, }jz( )
T = —ge0”

Fi6. 1-14.—Equivalent two-node active network.

works in which the vacuum tube acts not merely as a buffer between
successive stages but is embedded in the network. The equations for the
active network of Fig. 1-13 will illustrate this point. This network is the
basic circuit of a negative feedback pair when stray anode-grid capacity
is taken into account.
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The equivalent circuit for this active network is drawn in Fig. 1-14,
where all voltage generators have been replaced by current generators.
Tt is assumed that all the initial currents in the coils and the charges on
the condensers are zero; g is the transconductance of the tube; R, is the
internal resistance of the tube; G2 equals G5 4 (1/R,); and

i(t) =T, /: v(r) dr.

This network has two independent node pairs. If ground is taken
as the reference node and e,(Z), e:(t) as the potentials of the independent
node pairs, then application of Kirchhoff’s second law to the two inde-
pendent nodes in turn gives

¢ t
i = n/ »dr = rI/ er dr +C,5idi’ +Ger 4 Cnl (er ~ e2)
0 0 t dit
+ Galer — 82),
! des d
—ger = Ty '/0 exdr + C, gt + Ge: + Cha i (e2 — ex) + Gl2(e2 — ey).

After rearrangement the equations can be put in the form

¢ t
rlﬁUdT= [(CI+C12)%+G1+GIZ+FI/;dT]el

- (Gl2 + Ci2 g—t) €2,

0= (g ~ G2 — Ch: %) e1(t)
¢
+ [(Cz + Ci2) % + G + G2 + Ty [) d-r] s,

It may be seen that these equations are of the same general form as Eq.
(5) save that yi2 = ya.

Because the network of Fig. 1-14 has no less than 10 branches, it is
obvious that the mesh analysis would prove formidable indeed.

The General Nodal Egquations.—When setting up the general nodal
equations for the passive network, it will be assumed that all voltage
sources have been replaced by current sources and all mutual-inductance-
coupled circuits replaced by the equivalent II- or 7-networks.! The
following notation will be used.

1 Thus the network has only one reference node, the reference nodes of the various
separable parts being taken as coincident.
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Let

T';, G;, C; be the inverse inductance, conductance, and capacitance
linking the jth node to the reference node.

T, Gir, Cix be the inverse inductance, conductance, and capacitance
linking the jth node to the kth node.

1;(t) be the driving current in the jth node.

p; be the initial current flowing into the jth node from the inductances.

e;(t) be the voltage of the jth node with respect to the reference node.

jEZ’

¢ d
Yix = — (I‘ik /; dt + G + Cix d_t)’

n

Yii = Yi — 2 Yiks
krtj=1

¢
y,~=I‘,—/;dt+G,-+C d

where n is the number of independent node pairs. Then y;; is the
admittance linking the jth node to all other nodes; 3 is the admittance
linking the jth node to the kth node. Application of Kirchhoff’s second
law to each independent node pair of the network in succession yields the
system of equations

i) + o1 = zy,-kek(t) Ge=1, -, m); ®)

k=1

n of the initial conditions are contained in this system of equations. The
remaining n conditions are given by the initial values of e.(t) (k = 1,

.y ).

In the active network the equations assume the same general form as
those of Eq. (6) save that it is no longer possible to assume y;x = yi;.

Comparison of the Mesh and Nodal Analyses.—As developed in this
section, there is a formal symmetry between the mesh-nodal methods of
setting up the integro-differential equations which is summarized in
Table 1-4.

In any particular case the mesh analysis requires more equations if
E > 2N — P) and fewer equations if £ < 2(N — P). The mesh
analysis is usually to be preferred where there are a considerable number
of mutual inductances, and the nodal analysis is usually better when
there are vacuum tubes embedded in the network.

In general, the above comparison of the mesh and nodal analyses is
valid for the steady-state equations of the transform network. It is no
longer possible to choose the shorter solution simply by comparing E
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TaBLE 1-4.—COMPARISON OF MESH-NODAL ANALYSES

Comparative basis

Mesh analysis

Nodal analysis

Passive elements. . .

Active elements. . ..
Connections. ......
Basic law

Number of inde-
pendent equa-
tions.

Resistance, elastance, induct-
ance; more generally imped-
ance

Voltage sources

Elements in series

Kirchhoff’s first law: The volt-
age drop around a closed mesh
is zero

M =E — N + P, where M is
the number of independent
meshes

Conductance, capacitance, in-
verse inductance; more gener-
ally admittance

Current sources

Elements in parallel

Kirchhoff’s second law: The
current flowing into any node
is zero

N, = N — P, where N, is the
number of independent node
pairs

with 2(N — P), however, because more condensed methods of setting
up the transform equations from the transform network may be available,
giving in the mesh case fewer than E.— N 4 P equations and in the
nodal case fewer than N — P equations.

The Principle of Superposition.—It is one of the most important
results of the theory of linear integro-differential equations that the solu-
This principle may be stated

tions satisfy the principle of superposition.
in its simplest form as follows:

Any linear combination of two or more solutions of a set of linear
integro-differential equations is itself a solution.

In network theory the principle takes a form that will now be illus-
trated for the general mesh case.!

Let i) (b =1, . . .,

n) be a set of solutions of the general mesh

equations

D i) =) G=1cm,

k=1
and let ;:2(t) (k = 1, . . ., n) be a set of solutions of the general mesh
equations

ZJ'kZ'k(t) = e;(t) (.7 = 1: ;n);

k=1

then 7.1(f) + 7x2(f) is a solution of the equations
D Zai) = ) 4O G =10

k=1

! The analysis for the nodal case follows exactly the same course.
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This result follows from the fact that
Zatii(l) + Zitea() = Zigltnn () + t(8)].

The principle of superposition may be extended by continuity to
state that the response of a network to the convergent sum of an infinite
set of driving functions is equal to the sum of the responses of the net-
work to each driving function taken separately, and it will be so used in
Sec. 1-8 when considering the response of a network to a periodic driving
function.

A particular use of the superposition principle occurs in regarding the
system of driving functions

al) =i(1), el =1fl), -, e) =fut)
as a superposition of n systems, the first consisting of driving function
e(t) = f1(D), e’(t) =0, T T eﬂ(t) = 0,

the second of
6’1(5) =0, 320) = fﬂ(t)> Tty e"(t) = 0:

and so forth, thus reducing the general problem of finding the network
response to an arbitrary system of generators to one of finding the
response to a single generator.

The superposition principle is not given much prominence in this
chapter and is introduced here chiefly because it will be needed in the
analysis of the Fourier transform. It may be remarked, however, that
it can be utilized to derive, heuristically at least, an expression for the
transient respounse from the steady-state response.

1-4. The Theory of the Laplace Transform. Iniroduction.—In this
section the theory of the Laplace transform is developed as far as is neces-
sary for the solution of the linear-network equations.

There are two main alternative methods for deriving this theory.
One, which employs the principle of superposition to synthesize the
response t0 component generators, is similar to that often used in heuristin
discussions of the Fourier transform theory, the response to an aperiodic
function being regarded as the limiting case of the response to periodic
functions. Unfortunately a considerable amount of discussion is required
if the full power and rigor of the Laplace transform are to be made
apparent on this basis. The second attack, which is followed exclusively
in this chapter, introduces the Laplace transform as a mathematical
concept with properties that fit it for use in the solution of linear integro-
differential equations. The latter method is much more compact than
the former and has the additional advantage of starting from funda-
mentals and of requiring no speeial circuit theory. A possible drawback,
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however, is that the abstract and formal nature of the discussion may
obscure both the reasons for the various steps in the development and the
physical interpretation of the results obtained. In order to mitigate this
possibility the purpose of the various theorems will be pointed out when
they are stated. In addition, the theory will be illustrated by applying
it to a particular problem, the various steps of whose solution will be made
as the appropriate stages are reached.

The Laplace transform sets up a one-to-one correspondence between a
function f(¢) defined along the real axis and a function F(p) defined in
the right half of the complex plane. Since it often happens that the
transform of a function is a much simpler function than the original, a
complicated relation involving the original function becomes a simple
relation involving the transform function. In particular, linear integro-
differential equations in a real variable transform into linear algebraic
equations in the complex plane. It is this last property that makes the
Laplace transform such a powerful tool in the solution of integro-differen-
tial equations.

The procedure for solving problems with the aid of the Laplace
transform follows essentially the same course in all cases.! A mathe-
matical process is found that transforms the set of equations in the
original variables into a set of equations in the Laplace transforms of
these variables. These equations are then solved to give explicit rela-
tions for the Laplace transforms of these variables. The solution for the
original variables is then obtained with the aid of the inverse Laplace
transform.

The development given in this section is along lines parallel to the
procedure outlined in the previous paragraph. The Laplace transform
is first defined; the transforms of some typical driving functions are
derived; and the convergence of the defining integrals is discussed. The
mathematical process for obtaining the transform equations is then
outlined; expressions are obtained for the Laplace transform of the
integral and derivative of a function; and the solution of the transform
equation is obtained in a particular case. The basic theory is completed
with the introduction of the inverse Laplace transform and the derivation
of its relation to the direct Laplace transform. The section terminates
with a proof of the so-called ‘“convolution theorem” and a short discus-
sion of its application to network theory.

t The Laplace transform is used to solve not only linear integro-differential equa-
tions in a single independent variable but also linear equations with an arbitrary num-
ber of independent variables, as well as partial differential, integral, and finite difference
equations. The Laplace transform may also be applied to evaluate definite
integrals, to sum series, and to develop the theory of functions both of the real and the
complex variable.
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On the first reading it may be desirable to turn, at this stage, to Sec.
1-10 where a summary of the £-transform theory is given. The reader
untrained in mathematics can utilize this summary as a guide to the
important parts of this section and can ignore the remainder, which is not
essential for the practical application of the method, although it cannot
be omitted if the underlying theory is to be understood clearly and its
limitations, as developed in this chapter, made apparent.

The Laplace Transform.—As stated in Sec. 13 no attempts are made
to provide a theory more general than will be needed in circuit analysis.
Accordingly the class of functions discussed will be restricted to those
normally encountered in practice. These functions, which are all of
exponential type, will now be defined.

Derinirion 1. Tur E-vuncrions. Let f{(t) be a function of ¢
defined at least for all positive values of £. Then if real positive finite
numbers A and & exist such that

] < de

for all positive ¢, f(f) is said to be an E-function, or a function of expo-
nential type. If values of ¢ exist such that |f({)] > Be** where ¥’ < k
and B is any real positive finite number, then % is called the normal
exponent.

The E-functions have a number of interesting properties of which only
one will be stated here.t It will be needed when the Laplace transform
of the integral® of a function is being considered.

TueoreM 1. Let f(f) be an E-function; then j; ‘ f(r) dr 1s also an

E-function of normal exponent k.

It might be thought that by confining attention to the E-functions an
appreciable loss would be suffered in the power and flexibility of the
method. Thus all functions possessing poles on the real axis are barred
from discussion and in particular the Kirchhoff-Dirac §-function defined
by

8(ty = 0, t #£ 0,

fﬂ (1) dt = 1. @

1 8ee Gustave Doetsch, Theorie und Anwendung der Laplace-transformation, Dover
Publications, New York, 1943, for a discussion of those properties relevant to the
Laplace transform theory.

2 All the integrals considered here are to be taken in the sense of Lebesgue. The
use of a more general integral such as the Young-Stieltjes integral would have con-
siderable advantages, and there would certainly be a good case for deriving the £-trans-
form theory on this basis in a mathematical monograph, but the resulting analysis is
too lengthy for a book of this kind.
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Fortunately the difficulty can be overcome simply by defining these
functions as the limit of E-functions. Thus §(f) can be defined, among
many possible alternatives, by the equations

8t) = 0:1 <0,
5() = lim ae~=t:f 20, (70)

where it is to be understood that the limiting process will be carried out
only at a stage in the analysis such that all subsequent operations are
valid in the present theory.!

The arguments employed to justify the use of an analysis restricted
to the class of E-functions naturally provoke the query as to whether or
not further restrictions are advisable. Would anything be lost if atten-

tion were confined to those functions where the integral f : [f(H] 3t is

convergent? After all, every function realizable in practice is of this
type. It is not possible to obtain infinite voltages and currents or even
infinite rates of change of these quantities, because none of the applied
signals can ever be infinite in duration. Nevertheless this further
restriction will not be made in this chapter, because a considerable
simplification of the mathematics is often achieved by employing mathe-~
matically idealized driving functions. If this additional restriction was
imposed, it would not be possible to deal directly with the simple Heavi-
side step function

=0 t<0,

Ao =1, ¢z 0;

a limiting process, as used for the §-functions, must be employed. This
process gets increasingly clumsy when functions such as

) =1, t>0,
or
f@& =et, t>0

are discussed. It is true that such functions cannot in practice be
obtained, but when considering the response of a network to a sawtooth
waveform or to the built-up waveform of an oscillator it is much simpler
to regard those processes as continuing indefinitely rather than ending
after an arbitrary time 7. It may be further noted that in the theory
of linear networks, unstable networks or even networks with zero damping
cannot be discussed with the restricted theory.

t It may be noted that nothing would be gained, even if the restriction that all fune-
tions be E-functions, were removed. The integral in Eq. (7) is not a Lebesgue integral,
but a Young-Stieltjes integral; such a function could not be introduced into the theory

unless the latter were based throughout on the more genersl integral, a course of action
slready rejected because of its associated complexity of proofs,



Sec. 1-4] THE THEORY OF THE LAPLACE TRANSFORM 25

The functions to be dealt with have now been defined The concept
of the Laplace transform may now be introduced.

DeriniTioN 2. THE LarvLace Transrorm. The Laplace transform
F(p) -of a function f(t), which is defined ‘‘almost everywhere” for non-
negative values of ¢, is defined by

P(p) = ﬁ " emi(e) at

for these values of p for which the integral converges.!
F(p) can be written symbolically as

F(p) = £[f(®)],

where £ is called the direct Laplace operator and is equal to /(; " emrt dt.

In the remainder of this book the Laplace transform, operator, inte-
gral, and so forth, will be written £-transform, £-operator, £-integral,
respectively.

In those regions of the complex plane where the £-integral is not
convergent, F(p) is defined by analytic continuation. As an example
consider the case when f(f) = 1. The £-integral of f(¢) is convergent
for all R(p) > 0 and is equal to 1/p. But 1/p is a function regular all
over the complex plane except for a simple pole at the origin. Hence
F(p) may be defined as equal to 1/p in the left half of the complex plane,
where the £-integral of f(¢) diverges.

It may be emphasized at this point that no restrictions whatever are
placed upon f(¢) for negative values of {. Thus the three functions

(a) 1) =0, t<0; fO =1 20
(®) &) = e, t<0; f =1 t20;
(©) O =T@®, t<0; JjH=1  tz0;

all have the same £-transform, namely, 1/p. As will appear later, some
advantages are to be gained by assuming that f(f) = 0 for ¢ < 0, but.
there is no necessity that this be so.

1 This definition is the most general one possible if the integral, regarded as the
improper integra

lim " e dt,
-0 /%
w— ©

is defined in some sense.

A function is defined ‘“‘almost everywhere” if it is defined everywhere save in a
set of “‘zero measure.” In most practical cases the words ‘‘almost everywhere’ can
be omitted from the above definition, the term being introduced for reasons connected
with the proof of the theory, not its application.
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The £-transform of a few simple functions common in network theory
will now be derived.

1. f(t) = t»:
F(p) = [ e~ dt is convergent for R(p) > 0.
0

Let pt = 7, then

h _ T'(n+1
F(p) = ﬁ ptPrneT dr = —(pm )

n!
pﬂ+l

if n is an integer.
2. f(t) = e*, a complex:

F(p) = ﬁ e~ dt is convergent for R(p) > R(a) and = 1/(p — a).

From the transform for e it is possible to deduce the £-transform of
cos ft, sin Bt.

Thus
(S N T, .
Bleos ) =—— =35\ T r7E) " 5
similarly
. B8
Llsin ft) = g

The £-transform of the hyperbolic sine and cosine can be found similarly.
3. f(t) = 8(t): From the transform of e~* it follows that

F(p) = lim _¢

a——»uop‘i"d

F(p) is commonly taken equal to 1 (that is, the limiting process is carried
out immediately), but this will not be done here until it has been shown
that this course of action is legitimate in network analysis.

A fuller list of £-transforms will be found in Table 1-5 at the end of
this chapter. A number of basic theorems needed later in this section
will now be stated.

TueoreM 2. If f(t) is an E-function with normal exponent %, then
F(p) is convergent for all R(p) > k, so that F(p) converges over a right
half of the complex plane.

TaeoreM 3. If f(f) is an E-function with normal exponent k, then
pF(p) is bounded for all R(p) > k and F(p) tends uniformly to zero as
p — . This result is needed to establish the inverse £-transform.
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TueoreM 4. If f(f) is an E-function of normal exponent k, then
F(p) is regular in the half plane R(p) > k and

d ;;)(f) = (=1)» / e

The next theorem is concerned with the important questions of the
uniqueness of the Laplace transform.!

TreorEM 5. If fi(f), fo(t) are E-functions with £-transforms F,(p),
Fy(p) such that Fi(p) = F.(p) wherever the £-integrals of fi(t) and f2(¢)
converge, then fi(t) = f2(t) almost everywhere for nonnegative values
of t.

As stated above, the concept of ‘“equals almost everywhere” is not
one that plays an important part in network theory; and if we neglect this
refinement, the theorem can be loosely stated: “‘If two functions have the
same £-transform, then they are equal for nonnegative real values of ¢.”

The £-Transform of Integro-differential Equations.—In the previous
section the £-transform concept has been introduced, and some of its
fundamental properties stated. In this section it is proposed to show
how it can be applied to transform integro-differential equations.

To keep the discussion concrete, attention will be focused on the
linear equation with one dependent variable,

dri(t) dt( )

dv1i(t)
an dtn

t
tan T4 e S i) + f i(s) dr
0

{1
+ -t am (/; dr) i(r) = e®). (8)

The solution of this equation will illustrate all the fundamental aspects
of the general network solution, and in fact the network equations can
often be reduced to the form of Eq. (8) by a judicious elimination process.

In the particular case of the solution of linear equations with one
independent variable the mathematical process, mentioned above, for
obtaining the transform equations is almost trivial.? It consists merely
in taking the £-transform of both sides of the equation. In order to
effect this, three auxiliary theorems will be needed to give (1) the trans-
form of a sum of functions, (2) the transform of the integral of a function,
and (3) the transform of the derivative of a function. As these theorems
are fundamental to this chapter, the proofs are given in full.

TeEOREM 6. AbppITIVITY. Let f1(f), f2(f) be two E-functions with
normal exponent k and £-transform Fi(p), Fi(p), respectively. Then

1 S8ee Gustave Doetsch, op. cit., Chap. 3, p. 7; M. Lerch, Acta Math., 27, 339-351,
(1903).
% In other applications of the £-transform this is far from being the case.
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arfi(t) + as=f2(t) is an E-function with normal exponent &k and £-transform
a:iFi(p) + a2F:(p), where a, and a, are arbitrary constants.

Proof: The first part of the theorem is trivial. To prove the second
part one has by definition,

o ©

£laufi(t) + aefe(t)] = ﬁ e afi(f) + azfa(f)] dt = a, L e~Pfi(t) dt

+ a; /'0“’ e Pfy(l) dt = a1F1(p) + aaFa(p),

as required.
This result may be generalized by induction to give

N N
e[ a0 = Za,pf(m. | ®

r=1 r=
Taeorem 7. TransForM OF THE INTEGRAL OF A Funcrion. If f(¢)
is an E-function with normal exponent k, then j; ' f{r) dr has an £-trans-

form F(p)/p, where F(p) is the £-transform of f(t).
Proof: By definition,

£ [ ﬁ ) df] = lim 0’ ot [ /; ") df] dt;

now since f(f) is an E-function, ﬁ) ' f(z) dr is differentiable with respect to
¢ for all finite . Hence integrating by parts one gets
t . et t z . z gt
£ [ f@)dr} = lim | — — firydr| 4+ lim — f(0) dt.
0 P Jo 0 o P

T r—> o0

But, since by Theorem 1 f(¢) has normal exponent k, there exists A spch
that

¢
/;)f(f) dr < Ae*;
hence for R(p) > k,

. e [ “
lim — | — / f(x)dr| =0.
Z— 0 p 0 ]
Accordingly,

t — lifn 1 : —pt —F_'@
£[ﬁf(-r)d‘r]— hm;/o e~PHf(f) dt = ’ .

xr—

This theorem may be generalized by induction to give
TaeEoREM 7a. If f(t) is an E-function of normal exponent &k and

£-transform F(p), then the n-fold iterated integral ( j; ! df) ™ $) (n a
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positive integer) is also an E-function of normal exponent k, £-trans-
formable at least for R(p) > k, such that

Aoyl w

TareoreM 8. If f(¢) is an E-function with £-transform F(p) whose
derivative f’(t) is also an E-function with normal exponent &, and if F (p)
is the £-transform of f(¢),

L] = pF(p) — f(0).

Proof: Since f'(f) is an E-function with normal exponent &, then, by
Theorem 1, ﬁ) ! f(=) dr + f(0) is an E-function with normal exponent k.
But

¢
f = ﬁf’(f) dr + f(0+)

and hence

LifO] = £ [ﬁ f'(r)dr +f(0+)]

=< [ﬂ f'@) dr] + £[f(0+)]

by Theorem 6.
But, by Theorem 7,

- _ Llfen].
s[ﬁf@dr]_—p .

and, since £[f(0+)] = f(0+)/p,
£l @] = pelf®] — f0+) = pF(p) — f(0+).

This result may be generalized by induction to give
TraeOREM 8a. If f™ (), the nth derivative of f(f), is an E-function
with normal exponent k, if

lime 40 f(¢) = fO+),  limyyo f'(t) = fO+), -
lim,—, 4o f(n—l)(t) = f=1(04),

and if the £-transform of f(t) is F(p), then

L=l = pF(p) — [p~40+) + p~'0+) + - - - + pf"2(0+)
+ f00+) (1)

It is now possible to obtain the transform of Eq. (8). Taking the £-trans-
form of both sides and using the results of Theorems 6, 7, and 8 give
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@™ I (P) + @nop(p) +  + - + add(p) + T a-ll(p)
pm
= E(p) + a.[i(®p + 0)p* 2t 4 - - - + " 10)]
4+ @na[2(0)p™ 2 + T O)p "t + - - - )]
+ a1(0),
= V(p), (12)

where I(p), E(p) are the L-transforms of i{f) and e(f), respectively.
V(p) is called the excitation transform function of the network. It con-
tains the driving-function transform and the initial conditions.

It is seen that the use of the Laplace transform has in fact reduced the
original integro-differential equation to an algebraic equation which may
be solved for I(p) to give

1
I(p) = : o = Vi (13)
anp™ + anap™t + - - tat+ 4 +p;,;"

the denominator of Eq. (13) is called the “characteristic function,” and
the equation obtained by setting the characteristic function equal to zero
1s called the ‘‘ characteristic equation.”

Equation (13) is of the form

Response transform = system transform X excitation transform (14)

and this is typical of all network solutions.

The system function, which is usually a more complicated expression
than the reciprocal of the characteristic function, is the transform of the
response of the system to the driving function whose transform is unity.
It has been proved earlier in this section that the s-function has, in the limit,
the £-transform unity, and this is one of the reasons for the importance
of the d-function in network theory. The conditions under which it is
legitimate to take the £-transform of the s-function equal to unity are
discussed in the next section, where it is shown that this operation is valid
for all but an unimportant set of networks.

To complete the solution of Eq. (8), a means must be found for
deriving #(¢) from the expression for I(p) given in Eq. (13). There are
two main alternative methods for effecting this. One is based upon the
concept of the inverse £-transform. In the other, which is used by a
number of writers, the transform function is broken down into a sum of
simpler functions each of which may be recognized as one of the trans-
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forms tabulated in Table 1-5 at the end of the chapter or in more complete
tables given in other sources.!

The latter method has the advantage of mathematical simplicity in
that no fresh ideas are introduced and no knowledge of contour integration
is required, but the former will be followed here. For one thing it is
quite easy to find network problems where the elementary method would
fail or prove very cumbersome unless a formidable table of transforms
was compiled. Furthermore, it will be shown that the standard pro-
cedure based upon .the inverse Laplace transform is at least as short and
compact as any alternative.

The Inverse L-transform.—A number of the results needed in this
section have already been stated in the discussion of the direct Laplace
transform. One or two auxiliary theorems are required, however, to
complete the introductory material. The relevance of these auxiliary
theorems may become clearer if the explicit expression for the inverse
L-transform, hereafter called the £~'-transform, is stated, the proof being
deferred until later.

If F(p) is the &-transform of an E-function f(¢) with normal exponent
k, then f(2) = £ [F(p)] is given by?

ce+tjw

— 1 H 3
@ = 2,jhmu-~ /c e F(pler'dp, 120,
where ¢ is a real positive number greater than k.

TueoreM 9. If F(p) is the £-transform of an E-function f(f) with
normal exponent X, then

etjw
lim,, » / ~ e*F(p)dp
c—jw

is uniformly convergent for finite ¢ if ¢ > k. This result follows simply
from the theorem that states that pF(p) is bounded in the right half
of the complex plane.

TaeoreM 10. Let F(p) be the £-transform of an E-function f(f) with
normal exponent k. Then

1 .. e+ jw
g0 = Er—jhm,.m.= / ~ F(pyerdp

¢ fu

is also an E-function with normal exponent k.

1 See M. F. Gardner and J. L. Barnes Transients in Linear Systems, Vol. 1, Wiley,
New York, 1942.

? Here and throughout this section f(t) is taken equal to 3f(¢ + 0) + f(t — 0)] at
a point of discontinuity,
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This result is proved by showing that e~*g(f) is bounded for all ¢; and
since ¢ is any number > k, g(f) is an E-function with normal exponent k.

The main result of this section will now be proved. Once it is
obtained, the derivation of the explicit relation for the £~!-transform can
be achieved in a few lines.

TaeorEM 11. Let F(p) be the £-transform of an E-function f(f) with
normal exponent k. If

e+ jw
g(t) = 9;% lim, « /c-ju F(p)e* dp where £ > 0,¢ >k,

then

F(p) = [) e~Pg(?) dt.
Proof: Let

T T c+jm
G(p7) = ﬁ e Pg(t) dt = /; e vt dl—2—113/ - F(o)erdo
c—jm

when R(o) > ¢ on setting w equal to its limiting value, a step that is
justified by the convergence of the integral. Now the order of integra-
tion may be interchanged, since, by Theorem 9, the integrals involved
are uniformly convergent. Hence

etjm T
6om) = = | Fe)yde | et
P, 27".7 ¢ [}

.-.jq
1 ctie 1 — g0

F(o) ————— do.

=-2?J. c—~jeo p—c

But / I%al_d&g is absolutely convergent along the line R(¢) = ¢ by

. e “+i® Fg)e~-or
Theorem 3; and since RE(p) > ¢, this implies that ——p——a—dd
c—jo -
can be made arbitrarily small by choosing = great enough. Accordingly

if G(p) = lim G(p,),
™ ®

_ 1 [t F()
G(p) = 27] s '——p — o_do‘.

Let & do be the symbol representing integration in a clockwise direction
around the contour composed of the straight line R(¢) = ¢ and the infinite
half circle in the right half of the complex plane (Fig. 1-15). Let /c ds be

the integral around the half circle alone. Now ¢F (o) is bounded all over

the half plane R(s) > c; hence / F—(_U)—a is zero for all R{p) > ¢ and

[
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accordingly

1 eti= F(o) _ 1 F(o)
G(p)_?ﬂ_rj/c—ju p—ﬂda—ﬁjggp—vda'

But F(o) is regular in and on the contour 56; hence by the theory of
residues,

1 F(o) _
§E¢p—U“‘F@l
Hence

F(p) = /; - ePg(t) dt.

C+jo0

=C

R(0)

c-joo

Fi6. 1:16.—The infinite right-half circle.

TrEOREM 12. Let f(t) be an E-function with normal exponent % and
£-transform F(p); then

cti=
%j / - emF(p)dp = f(t) almost everywhere for ¢ > 0,

c—jw

=0 fort < 0.

The proof of the first part of this theorem follows from Theorems 5
and 11. By Theorem 11, if

e
o0 = 5 / et an,
G(p) = / " g0 dt,
for B(p) > k. °



34 LINEAR-CIRCUIT ANALYSIS AND TRANSIENT RESPONSE [Sgc. 14
But by definition

F(p) = ﬁ oL

for R(p) > k.
Hence by the uniqueness Theorem 5,

f®) = g®)
almost everywhere for ¢ > 0.
To prove the second part of the theorem it may be remembered that
pF (p) is bounded for all R(p) > k. Henceif ¢t <0,

c+j

f " eF(p) dp = $ eF(p) dp,
c—jw

where # has the same meaning as in Theorem 11, by Jordan’s lemma.!

Now e?F(p) is regular (and bounded) for all R(p) > k. Hence by

Cauchy’s theorem

SEe"‘F(p) dp =0

fort < 0.
The second part of Theorem 12 provides the main reason why it is
sometimes desirable to assume f(f) = 0 for ¢ < 0, since in this case

1 ctim
@ = rj /G ~ e”F(p)dp

—jw
for almost all ¢.
The £-'-transform is an operator that may be written symbolically
1 ctj=

e = e dp. (15)

57?.7. ce—j®
Returning now to Eq. (8) it may be seen that the explicit expression
for the response function is

i(t) =

1 ferie eV (p) dp
277 aﬂp"+aﬁ.1p"—1+"'+dxp+ao+%+"'+'t;;mm'
3

(16)

This integral can most easily be evaluated by the theory of residues?
which will be discussed briefly below.

_J'u

1 See E. T. Whittaker and G. N. Watson, 4 Course of Modern Analysis, 4th ed.,
Cambridge, London, 1927, p. 115.

2 For a fuller treatment see E. T. Whittaker and G. N. Watson, op. ¢it., pp. 164~
189.
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The Theory of Restdues.—The evaluation of integrals in the complex
plane is often best accomplished by transforming them into integrals
around a closed contour. In the £-transform theory the integrals to be
evaluated are of the form

1 etjo
523 f . Fpyerap,
and these can be transformed into integrals around a closed contour if the
integral of F(p)e?* around the infinite half circle in either the right or left
half of the complex plane is zero.

A sufficient condition that this is so can be deduced from Jordan’s

lemma which states that

[ P (p) dp

is zero for all positive ¢ when the path of integration is the infinite left
half circle, provided that F(p) = O(1/p) for all R(p) < 0.1
Two corollaries of this result may be stated:

1. femF(p) dp integrated over the infinite left half circle is zero for all
1> Tif e*"F(p) = O(1/p) for all R(p) < 0.

2. [erF(p) dp integrated over the infinite right half circle is zero for
all t < T if e*™F(p) = O(1/p) for all R(p) > 0. In particular the
integral is zero for all ¢ < 0 if F(p) = O(1/p) for all R(p) > 0.

It has already been noted in the previous section that the £-transform
of an E-function is O(1/p) for R(p) > ¢, and the majority of the £-trans-
forms occurring in network theory are, in fact, O(1/p) for all R(p). The
chief exceptions to this rule are functions of the form ¢ *TG(p) where

G(p) is O(1/p).
eti=
For the time being let it be assumed that %] / _ F(p)erdp is
c—~jm
equal to either

1 F ¢
2rf L. (p)er* dp
or

1 1
5‘_7 L,F(p)e? dp)

where Ty is the contour formed by the straight line R{p) = ¢ and the
infinite right half circle and T'; is the contour formed by the straight line

1 F(p) is said to be O(1/p) if pF(p) is bounded for all sufficiently large p.
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R(p) = c, the infinite left half circle and the two straight-line segments!
jointing the points p = ¢ + jo and p = +jw.

It is a well-known result of the theory of functions that the integral
of a meromorphic function taken in an anticlockwise direction around a
closed contour containing a number of simple poles is equal to 2] times
the sum of the.residues of these poles.? The residue of a pole is defined as
follows: '

Let H(p) be a function regular and nonzero in the neighborhood of
the point p = po. Then the residue of the function H(p)/(p — po)* at
its nth order pole p = pq is

1 dﬂ-lmp)]
(=D dp™ Ly

It follows that if F(p) is a function O(1/p) with poles at py, ps, ps,

., P of order ry, 7o, 73, . . . , r'n respectively, so that
H
H (p — pa)
a=1

where H(p) is a function regular all over the finite part of the complex
p-plane, then

1 efj dre—1

N 1
F(p)er* dp = z o =Dt [EE,,TI [F:(p)e‘"]} > (18)
t=1

273 J. —j® =Py

where
Fi(p) = (p — p)"F(p). (19)

All the system transforms of the networks considered in this chapter
are similar in form to Eq. (17); sinece the common excitation transforms
are of this form also, the response of any network to one of the common
driving functions can be evaluated from the formula of Eq. (18). It is
possible to find excitation functions whose transforms are not of the type
of Eq. (17), but a discussion of such cases is outside the scope of this book
and will not be attempted here.?

To illustrate the above theory the £ '-transforms of several functions
will be derived.

t [F(p)e dp over the straight line p =¢+j » to p = j « is gero if /;ctj: F(p)ert dp
fonverges.

2 The function must be regular upon the contour.
3 See Gustave Doetsch, op. ¢it.
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1 .
p+a

/C+j°° ept d
jo = orj c—ju Pt a P
1 et
T 2nj 951“1 p+a dp,
since F(p) = O(1/p); R(p) < 0.

But ¢**/(p + a) has a simple pole at p + a = 0 with residue e,
Hence f(t) = e

b
2. F(p) = (;’T“La)z;

L F() =

e e(p +b)
10= 55 ) . G o
1 e’ (p + b)
= 2nj ¢rf@ + a)? dp,

since F(p) = O(1/p), R(p) < 0.
But e**(p + b)/(p + a)? has a double pole at p 4+ a = 0, with residue

;; [(p + b)eH]yea = e + t(b — Yoo,

Hence f(¢) = [1 4+ (b — a)tle.
3. F(p) =

P .
(p+a)(p+b)(p+c)wherea;éb;éc;-éO.

= 5 / e pe®
0= 25 Jein BTG E DG+ P
= L pept
2nj I (p + a)(p + b)(p + 0)
since F(p) = 0(1/p), R(p) < 0.
pe”! has three poles,atp +a = 0,p + b = 0,

(p +a)(p + b + o)
p + ¢ = 0, with residues

ae—% be—bt ce—ct

@a=blc—a) G@-db—-0o (—ab—0

respectively.
Hence

ae™% ] be?t ce™*

V== be-a T@=bvo-0 T e-at -9
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4 F(p) =22
. F(p -
Here
1 [oHi= e dp
) = z— —_—
7o) 2mj /;_,-., P
_ 1 e 29 dp
- 2_1r] ¢I‘| ¥/

for t < r, since e”F(p) is O(1/p) for R(p) > 0 and t < 7, and

1 et?e=0 dp

10 = 556, "

for ¢ > 7, since erF(p) is O(1/p) for R(p) < 0 and ¢ > . Now since
-7 /p has no poles inside contour I'y,

, ) =0
fort <.
The pole of e~ /p is at p = 0, which lies inside I';, and has residue 1.
Hence
iy =1

fort > 7.

The integral defining f(¢) does not converge at the point of discontinu-
ity ¢t = r, but following the course of action adopted throughout this
chapter, f(r) is taken as

iy =T = O HIC 0

1
2

To conclude this section the conditions under which it is legitimate to
take the transform of the é-function as unity will be considered.

As a basis for discussion consider Eq. (16) where V(p) = o/(p + a).
Thenif n 2 0,

ap™
(p + a)(a"pm+n + an_lpm+"—l . e aopm + a_lpm-—l + I + a__ﬂ)
is O(1/p) for R(p) < 0.
Hence
i(t)
_ L ¢ ap™e? dp .
27|'j I (p + a‘) (a"pm+n + an—lpm+"—l + « + aopm + P + a_m)’

(20)
this integrand has poles at
p+a=0
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and

@™+ Gp™ 4 s A ap™ + aspm?
+...+a_m=0_ (21)

Two conditions have to be satisfied if £{3(2)] is to be taken equal to unity.

1. The residues of the poles of Eq. (21) must be the same whether
L] =1 or £[6(H)] = limer 0 ae™",

2. The residue of the pole at p 4+ @ = 0 must — 0 almost every-
where when a — «. The first condition is obviously satisfied, because

o N 1 d a
P+ Mt o
The second condition is satisfied onlyif n > 1, for the residueof p + « = 0
is

(m > 1) — 0 for all finite p, when a« — «.

(—a)mtie=t
Gn(— )™ F tni(—a)™ 1 - - - F a_m’

which, as may be seen by inspection, -0 as a— « fort 2 0if n = 2,
—0asa— o fort >0and —>1/(a,) asa— = fort =0if n = 1 and
diverges as « — «» if n = 0.

It may be concluded that the £-transform of the &function may be
taken equal to unity when the function is applied to a system whose
system function is O(1/p).

The Convolution Theorem.—QOne more theorem will be proved in this
section: the so-called convolution or Faltung theorem. Although this
does not play an essential role in the £-transform theory, it is sometimes
useful in solving practical problems and is certainly valuable when
discussing the general solution of the network.

TreoreM 13. TuE ConvoLurioN THEOREM. Let f(¢) and g(¢) be
two E-functions with normal exponents k,, k; and £-transforms F(p),
G(p) respectively. Then if k(f) is a function whose £-transform is

F(p)G(p),

h(t) = /; f()g(t — 1) dr (22)

almost everywhere.
Proof: Let ¢ be a number > ki, k2. Then

1 :+;'u
h@t) = ) ﬁ e F(p)G(p)e* dp

almost everywhere, since if F(p) and G(p) are both £~'-transformable,
F(p)G(p) are so a fortiors.
But

F(p) = ﬁ " f@)e dr;
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edj oo w
h{ty = ”"‘/ G{p) [] flryerr d‘r] etet g

c+:==
= 35 f [ / G(p)f(r)ert— dr] dp.

Since the two integrals are uniformly convergent in the region under
consideration, the order of integration can be changed to give

¢ ctjw
h(t) = ﬁ ) [535 / . G dp]dr

Ed 1 ctjo
-+ f f(m) [Er} '/;—ju G(p)ert—m dp] dr.

¢

hence

Now by Theorem 12

1 feti =git—17) itxr
—_ {t~1) = 2
8 Jo;. @A _ if1< 7

Hence
h(t) = ﬁ Mgt — ) dr,

where A(t) is called the convolution of f(f) and g(t) and is written sym-
bolically

h(t) = J(t) * g{0). (23)

This theorem will be applied in the next section to find the solution of
Eq. (8).

Conditions for Stability, Steady-state Response, eic., of Integro-differ-
ential Equalions in a Single Variable.—In this section some of the general
features of the solution of Eq. (15) will be discussed. Most of the points
made will be applicable mutalis mutandis to the solutions of the general
network case.

It has been shown above that the sclution of Eq. (15) is

1 ctjwo mV(p)epg
t .
1( ) 27{]/0 —j (anpm+ﬂ _+. A lpnﬁ-n—l + CF a%) dp, (24)

and provided that ¢~ ?* times the integrand is O(1/p), this may be written

prVip)er d
27"_] Ty (a,ﬂpmﬁ'n + a“41pm+ﬂ—l 4 - 4 a__m) D

it) = (25)

It is always possible to factor the polynomial denominator of Eqy. /25)
into the form
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H a(p — pO™,
=1

&

where

rn=m-+4n
1=1
Now the residue of the pole at p = p, is, in general, a function of the form
ePt’B;(t),

where B;(f) is a polynomial in ¢ of degree r; — 1.

If @n, @u_1, . . ., G- are all real, then to every root p: = a1 + jf:
there corresponds a conjugate root i1 = a; — jB: so that ¢(¢) is a sum of
terms of the kind

et cos ButBic(l) + e« sin Bit Bu(f), (26)

where Bi.(f) and Bi,(¢) are both polynomials of degree r; — 1 and, pro-
vided that V(p) is also a rational or regular function of p, () consists
solely of terms of the form of Eq. (26).

If e; > 0, the corresponding term in (¢) tends to infinity with &
Hence a necessary and, in fact, sufficient condition that the system be
stable is that all the poles of the system transform lie on or to the left
of the imaginary axis in the complex p-plane. If all the poles lie to the
left of the imaginary axis, the system is called absolutely stable. One of
the most important cases occurs when the driving function is of the form

e(t) = e,

Then, if all the initial conditions are zero,

1
V@) =

If the system is absolutely stable, the residues of the poles of the system
transform all tend to zero as ¢ tends to infinity and the response tends
in the limit to the residue of the pole at p + jw ~ 0. This residue is
of the form
i(t) = Y(jw)e,

where ¥ (jw) is a rational function of jw independent of the time. This
response is the familiar steady-state response to a sinusoidal generator of
angular frequency w. A further discussion of the steady-state response
is given below in Sec. 1-8.

To conclude the discussion of Eq. (8) consider the application of the
convolution theorem to its solution. - Let v(f) be the excitation function
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of the system,? and let the system function, that is, the response of the
system to a 3-function, be @(¢). Then

i) = () « Q) = ﬁ) Qe — 1) dr = [) QU = () dr. (20)

In practice it is usually simpler to evaluate i(¢) directly from Eq. (16)
with the aid of the theory of residues than to use Eq. (27). However,
Eq. (27) is a compact form in which to present the solution and may be
preferable should it be desired to evaluate the response of the system to a
whole series of driving functions.

1-5. The Use of the £-transform in the Solution of Network Problems.
In this section the use of the £-transform is illustrated by applying it to

r‘lZ

: T

i [

t G, (e {

! |

e, ! e, @

, [ |
0 ! c,i:j: Q, I ) :

{ b |

! l

¥ - N

Fia. 1-16.—Two-node original network.

solve a special problem. As was the case in deriving the network equa-
tions, the discussion is made more detailed than is necessary in order to
bring out the general aspects of the solution. The extension to the
general case can then be made with a minimum of explanation.

In the course of the treatment the concept of the transform network
will be introduced in such a way as to make its practical value clear.

The network chosen as an example is shown in Fig. 1-16. It repre-
sents a terminated low-pass filter section driven from a pentode source.
The response of this network to a é-function will now be found.

To keep the discussion as general as possible it is assumed that there
is an initial current p flowing in the inductor I'j; in the direction shown
in Fig. 1-16, and that the condensers have initial charges @, ¢, so that

1

limyms ex(f) = €1(0) = ;g—l,

Q-

lim,—o Ez(t) = 62(0) = _Cv_z,

! Assuming that this is an E-function, which is not the case if the initial co~ditions
are not all zero.
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where e1(2), ex(t) are the voltages across the two independent node pairs,
the grounded node being taken as reference node.

This network is a special case of the network of Fig. 1-10, and hence
from Egs. (5) the equations of state can be written

11{t) — p = yuei(t) + yeea(t),
+p = yaei(t) + yaeea(t), } (28)

where y11, Y22, ¥12, and y, are operators given by

¢ t
=G + C1 + T ﬁ dr, Y1z = — T2 ﬁ dr,

d (29)
Yo = -'Tm/ dr, y22=G2+Cza—'+I‘n/ dr
0 t 0
If
I(p) is the £-transform of i(¢),
E\(p) is the £-transform of e;(t),
Ey(p) is the £-transform of e.(t),
then taking the £-transform of both sides of the Eqs. (28) yields
T
I(p) — % = (Crp +G + ")E (p) — —”EQ(P) @,
(30)
% = — 'I‘—lel(P) + (Czp + G2 + 7;2) Ep - Q.
If
Jie) = 1)~ + @,
(31)

Jap) = 2+ Qs
then Eq. (30) assumes the general form

Ji(p) = Yu(p)E«(p) + Y1.E:(p), } (32)
J2((p) = Yau(p)Ei(p) + YaEi(p),

where
YVul) = Cp +Git 25 Yulp) = - 28
T 13'; (33)
Yu(p) = — 2 Yzz(P) =Cp + G +—

Ji(p), J2(p) are the excitation transforms for node pairs 1 and 2
respectively. They are equal to the sum of the driving transform across
the node pair, the initial charges on the condensers, and p~! times the
initial inductor currents flowing into the nodes.
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Equations (32), the transform equations, are very similar to the
normal steady-state equations for a network, a fact that enables one to
derive them directly from the so-called transform network, which will
now be introduced. Consider the diagram of Fig. 1-17, where the normal
circuit elements have been replaced by the corresponding p-admittances.
If Kirchhoff’s second law is applied to the two node pairs of the network
on the assumption that the current through an element is equal to the
product of the voltage across it and the p-admittance, one gets the
system of Egs. (32). But since the transform diagram can be con-
structed directly from the network, the transform equations can be
written down immediately without having first to set up the integro-
differential equations and then to transform them.

Dyyyp
3" Fg 17,71 S f
‘ !
: G, Gy :
t
Eﬁm: , ',
{ e —t (; {
: 1 Cp T C,p T J,p :
lt )
______ i

F1g. 1:17.-~Two-node transform network.

The simplification of the analysis that results from using the transform
network is often considerable, especially if there are a number of nonzero
constants of integration. Accordingly a special section is devoted to
deriving the procedure for setting it up in the general case, both for the
mesh and nodal analysis, and to developing in greater detail the inherent
advantages thus gained.

This subject is put aside for the moment, however, in order to return
to Egs. (32). These can be solved explicitly for E1(p), E:(p) to give

Ei(p) = J1(p) Yas(p) — J(p)Y1x(p)
Yu(@)You(p) — Yiu(p)Yuu(p)

Es(p) = Jo(p)Yulp) — J1(®@)Yau(p) .
Y1u(p)Yaelp) — Yie(p)You(p)

The connection of the special with the general case is made more
evident if this solution is itself put in more general terms.
Let

(34)
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and let Aj(p) be the determinant formed by replacing the jth column of

Alp) by (j;) Then if Aj{p) is the cofactor of ¥ in A(p), so that

2

Yi b = Alp)
=1

and
2

Z Ji By = i(p),

k=1

the solufion can be written

_Adp)  Jdp) Aulp) + Ju(p) Anlp)
Bip) = Ry = Y
= J1(p)9u(iﬂ) + J2(P)912(p),
Balp) = As(p) _ J1lp) Anlp) + Jalp) Aseip)
= Ay T A(p)

= J1(p) Car(p) + Jo(p) Qa(p),
or finally

[

B = ) som) =12, 35)
i=1
where
Aiilp)
Qulp)y = “EPL
i(P) Alp)
The elements 2:(p) are system transforms in the sense defined above in
Sec. 1-4; thus it may be seen that the transforms of the response functions
can be expressed as the sum of a pumber of simple products of excitation
and system transforms.
In the important case when all the initial constants are zero,
. I(p) Avi(p)
Ez(P) - A(p) 4
I(p) Ani(p)
E = £Ap) anp)

To complete the solution it is necessary to obtain the explicit expres-
sions for e,(f), e2{t). Now the @ (p) are rational funections of p; hence the
Ju(p)Q(p) terms are of the same form as the response transform of Eq.
{13) and response functions may be found by the same means. Asin the
case of Eq. (8) the direct extraction of the residues is usually the quickest

(36)
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and most convenient method of obtaining the solution, and this procedure
is illustrated numerically below. The convolution theorem, however,
can be used to express the response function as a sum of convolutions of
an excitation and a system function. Thus if

wp(t) = &7 u(p)]

Ity = £ Jx(p)],

and

shen
2

) = ), el D).
k=1

In the general case w;x(t) is the voltage (current) response of the kth
node (mesh) to a é-function impulse applied across the jth node (mesh).

The poles of Qu{p) occur at the roots of the characteristic equation
of the network, that is, at those values of p for which A(p) = 0. A neces-
sary condition that the network be stable is that all the roots of A(p) lie
in the left half of the complex p-plane.

The solution of the chosen example will now be considered for the case
when i(f) is a é-function. In order to simplify the labor of computation
it is assumed that

Q1=Q2=0, p=0, G1=G2=G, 01=02=C.
The fact that the system transforms are all O(1/p) justifies taking

£[3(H)] = 1. Substituting these values for the driving function and
initial conditions in Eq. (35) gives
Cp+ G+ 12 Cp+ G+ 2

o1 = .
2 2
Cp+0+%3)—% (Cp—}—G)(Cp-l—G’-}-g%u)

If 8CT2/G* > 1 the roots of Cp + G + 2T'1o/p = 0 are complex and are
of the form —p; + jp., where

Ez(P) = (

_G _ G [8r'unC 1
r=3 PTxN @ ‘
E,(p) has poles at Cp + G = 0 and p = —p; + jp,, and the residues of
e? E,(p) at these poles are as follows.

: 1 (&
Resxdueath-{—G:Olsiae ¢/,

e Pe?t  —py + jps
e Pilg—ipt . —m —jpg.

Residue at p = —py + jps is

Residue at p = —py — jpa is
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But ex(f) is the sum of the residues of Ex(p)e?*; hence

2 2C 2Cp.: 20

where
I G RCT,
p=gp  and P =gmal <l

1-6. General Solution of the Network Equations. The Nodal Case.— -
The procedure in the general case is a simple extension of that already
illustrated for the two-node network of Sec. 1-5; thus a detailed derivation
of the results is not necessary.

It was shown in Sec. 1-3 that the general equation in the nodal case
may be written in the form

n

11(0 + o= § yikek(t) (j =1, --,n) (37)
k=1
where

d

12
Y ";Ci[‘ﬁ",'Gi“{"FiLdt;

-

d 3
—Yir = Cika‘i + Gix + Tz f dt,
0
Yis = Yi — z Yirs
k=1
and p; is taken positive if the initial inductor current is flowing into the

jth node. Here n of the initial conditions are included in Eq. (37), and n
more are given by the initial values of the node voltages

].imt_.o el(t) = 91(0), limt—ao 92(0 = 62(0): T,
limgo e,(t) = e.(0).

Taking the £-transform of both sides of each of Egs. (37) gives®

n

I + 2+ 2 Cales(0) — ex(0)] + Cies(0)

kef=1
n

- 2 Ya@E®)  (G=1 - -,n), (38

k=1

10 [C,’k gz ek(t)] = pCufi(p) — Cuer(0), ete.
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where I;(p), £x(p) are the £-transforms of 4;(¢) and e.(t) respectively and

—Yiu(p) = Culp) + G + % ik

Yi=Cp+ G+ Yi=TYi- E Y (38a)
k=1
Let

Vi = z Cii[€(0) — ex(0)] + Cie;(0).
krjde=1
Then v; is the sum of the initial charges in the condensers linking the jth
node with all the other nodes of the network, the charge being reckoned
as positive if the plate of the condenser connected to the jth node is
positive.
Then, if the excitation transforms
,(0)
4

are introduced, the equations assume the general form

Jilp) = Ii{p) + +v G=1---,n) (39)

n

Ji(p) = Y Ex(p). (40)

The method of arriving at Eq. (40) directly from the transform network
is an immediate generalization of that given in Sec. 1-5, but a detailed
discussion is deferred until Sec. 1-7 in order to avoid duplication.

The close similarity between Eqs. (40) and (32) permits carrying out
the remaining steps of the solution with a minimum of comment. Equa-
tion (40) may be solved by Cramer’s rule to give

n

N ) anp) |
B = ) POD N o), (a1)

where A(p) is the principal determinant of the Y;,'s, Au(p) is the cofactor
of Y in A(p), and

Qi(p) = AA]k((pp))
1f
£7Ju(p)] = xl®)
and

wie() = L7 Q(p)],
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then the convolution theorem may be invoked to give the solution in the

form
n

e;(t) = E 3u(l) * wyil8).
k=1

The Mesh Case—In Sec. 1'3 it was shown that the general equations
in the mesh case may be put in the form

e:'(t) - u:f(o) = z ZJ'kik(t) (.7 = 1: et an)y (42)
k=1

where u;(0) is the initial voltage drop around the elastances in mesh j in a
clockwise direction and

d £ t
=2k = Lg = + By + Si dt, % = Ly + Ry + Sy
dt o dt
Here n of the initial conditions are included in Fq. (42), and n more are
given by the initial values of the mesh currents:

lim, o 21(8) = 7:(0), limy-.0 22(8) = 72(0), Tt

lim, o 2.(8) = 7,(0).
If Ep), I(p) are the £-transforms of ¢;(t), :(!) respectively, then taking
the £-transform of both sides of Eq. (42) gives

n n

Ei(p) — %®+MWw-sz@=ELMM@-
k#j=1 k=1
Let
w@=%ww-zzmwn (43)
k¥j=1

¢;(0} is, therefore, the total initial flux through mesh j. Then, if

u1(0>

Vilp) = Ei(p) — + ¢(0), (44)

the equations assume the simple form

n

mm=2&mmw. (45)

k=1

From here the solution is carried out exactly as for the nodal case.
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Unfortunately, Jx(p)Q:(p) in Eq. (41) is not always the £-transform
of an E-function, although this is the only case with which the analysis
developed in the previous section is competent to deal; it is, therefore,
impossible to say that a solution always exists. For example, consider
the case where pentodes with infinite internal impedances are connected
by two-terminal interstage-coupling networks composed of a pure
inductance, as in Fig. 1-18. Then if this system is driven by a eurrent
source ¢(¢) and if the initial currents are zero, the expression for the out-
put transform voltage is

E(p) = I{p)p",

where n is the number of stages. This function has no £-%-transform.
All that can be said is that ¥q. (41) is the general solution for the
nodal network if the response transforms are £-'-transformable. In any

e

et

——— e e

achievable physical network this is, of course, always the case; it is also
the case for most of the idealized networks with which one wishes to deal.

1.7. The Transform Network.—The concept of the transform network
was first introduced in Sec. 1-5. In this section it will be shown haw
to set up the general transform network both in the mesh and the nodal
case and how to apply it to derive the transform equations. A discussion
is given of the value of the concept in practical cases.

The General Nodal Case.—The general equations for the nodal case
are given by Eq. (40). These equations can be derived without setting
up the general integro-differential equations, as follows. Replace the
various elements of the network by their appropriate p-admittances.!
Place across the kth independent node pair a constant-current p-generator
Ji(p) of magnitude equal to the sum of three quantities:

1. Ii(p), the e-transform of 4,(¢), the driving function current gener~
ator in the kth independent node pair.

1 8ee See. 1.2 for the definitions of these quantities. It is assumed that all trans~
formers are replaced by their equivalent II- or T-networks.
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2. px/p, where p; is the total initial current flowing 7nto the nth node
from the inductors linking the nth node with the other nodes of the
network.

3. v, where v, is the sum of the initial charges on the condensers
linking the kth node with all the other nodes of the network, the
charge being reckoned as positive if the plate of the condenser con-
nected to the kth node is positive.

Thus
Ju(p) = L(p) + ;’f + Y

The general nodal equations are now set up by applying Kirchhoff’s
second law to the independent node pairs of the transform network in
turn, remembering that the current flowing into a p-admittance Y{(p) is
equal to Y(p) times the voltage across it.

The procedure has been illustrated for a two-node network in Sec. 1-5.

The General Mesh Case.—Equations (45), the transform equations, of
the general mesh case can be obtained in a similar fashion as follows.
Replace the various elements of the network by their appropriate
p-impedances.! The method of taking account of mutual inductance
will be discussed below. Place in the jth mesh a constant voltage
generator V;(p) equal in magnitude to the sum of three quantities:

1. E;(p), the £-transform of the driving function voltage generator
in the jth mesh.

2. —u;(0)/p, where u;(0) is the initial voltage drop round the capaci-
tors in mesh 7, in a clockwise direction.

3. ¢;(0), where ¢;(0) is the initial flux through the jth mesh, given by
Eq. (46).

Thus

”’(0) + 4i(0).

Vilp) = Ei(p) —

The general mesh equations are now set up by applying Kirchhoff's
first law to each successive mesh of the transform network in turn,
remembering that the voltage across a p-impedance Z(p) is equal to Z(p)
times the current through the impedance.

Mutual inductance terms are allowed for, as in the conventional
steady-state analysis, by assuming that the open-circuit voltage across
coil L; coupled by mutual inductances M, to a system of coils Ly(k = j,
j=1,--+,n)is simply

1 See Sec. 1-2. - .3 b
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+ pMiky
k=1
where the ambiguity of sign is resolved as in Sec. 1-2.
If this procedure is applied to the network of Fig. 1-9, then the trans-
form network will be obtained in the form of Fig. 1-19,
S S.
R, /P Lo M Ly o/? R,

— AA— T | AN —

Jy(p) J5(p) 5
=S
le— Vz(p)<+

+
_C Vi(p)

A}

Fia. 1:19.—Two-mesh transform network.

where

VI(P) = Ei(p) — Q.81 — Q12812 + Lipr — Mpo, } (46)

Va(p) = +Q12812 — Q282 + Layp: — Mp,.

Applying Kirchhoff’s first law to the first and second meshes consecu-
tively gives

Vilp) = I.(p) (Rl + 5_51 + Lip + %12) — L(p) <Mp + %);

Vilp) = —1:(p) (Afp + %) + I.(p) (Rz + % + ‘S;)lz

These equations may be compared with the original Eq. (2) and it is
easily verified that Eqs. (47) are, indeed, the transforms of Eqs. (2).

Advantages of the Transform Network.—The value of the transform
network is chiefly evident when the initial electrostatic and magnetic
energy in the circuit is nonzero, this being the case in which use of the
original Heaviside calculus was most cumbersome. It is also the case
where the possibility of getting a sign wrong or of miswriting a term is
most serious. The transform network not only is valuable as a reliable
short cut to writing down the transform equations but also can be used
to derive these equations in a simpler form.

In the first place it is now possible to use Thévenin’s theorem in the
general form given in Fig. 1-1, and this may decrease the number of
equations required.

(47)

+ sz)'
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Second, consider the transform network of Fig. 1-20. The transfer
voltage of this network can be written down by inspection to give

— Jl(p) .
Vi) = vy T V) + V) V) Za(e)

and if Y, Y, Zi. are complicated networks, this may represent a con-
siderable saving in labor.

Examples of this kind could be - °
multiplied indefinitely, but enough 4
has now been written to demon- :
strate the statement that the E
£-transform method, using the 7, BE—)_] 2 ® V"’(p:
concept of the transform network, ! :
is as simple and compact as the ¢

Heaviside calculus but is more
rigorous and also more powerful
because of the ease with which it can be applied to the case of nonzero
initial conditions.

1.8, The Steady-state Response of the General Linear Network.—Up
to now attention has been focused solely on the response of a network to
a nonperiodic driving function. There has been nothing in the analysis
making it inapplicable to the periodic case, but the necessity of knowing
the initial conditions prevents direct use of the g£-transform theory.
There are two ways out of this difficulty, both of which will be discussed
in this section. In the second and more valuable method a modified
£-transform, the so-called §-transform, is employed. In the former, the
periodic driving function is expressed as a series of sinuscidal driving
functions. Because the response to a sinusoidal driving function can be
written down from the transform network, the response function can be
represented in the form of a series that may converge rapidly enough to
justify the neglect of all but a few terms.

The first step in outlining the application of this method is to con-
sider the response of the network to a signal Ie/«* applied at time { = 0.

Now the £-transform of Ie“t is

F1g. 1-20,—Transform H-network.

I -
p—

thus, if the signal is applied across the jth node! (mesh), the transform
response across the kth node (mesh) is

! From the superposition principle of Sec. 1-3 there is no loss of generality involved
in confining attention to the case where the driving function is applied across a single
node (mesh).
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n

Exp) = p—Iﬁ Qix(p) + E Qu(p) Vi(p),

i=1
where Q(p) are system functions of the type discussed in Sec. 1-6 and
Vi(p) are excitation functions due to the initial conditions and are all
of the form a; + (b:/p).

Let us assume that Qu(p)Vi(p) are O(1/p) and that all the poles of
Qu(p) Vi(p) lie to the left of the imaginary axis! in the complex p-plane.
Then the residues of all these poles decay exponentially with time, and
after a sufficiently long time their sum is vanishingly small. The residue
of the pole at p — jw = 0, however, is Ie™*Q;(jw), which is oscillatory for
real values of w.

It is clear from the above that after a sufficiently long time the
response of the network differs by an arbitrarily small amount from

e(t) = I Qu(jw). (48)
More loosely, Eq. (48) is the response across the kth node (mesh) to a
signal et applied at time { = — o« across the jth node (mesh). It is, of

course, the familiar steady-state response and could have been obtained
directly from the transform network by assuming p to have the special
value jo.

The steady-state response to an arbitrary periodic waveform can be
obtained from the ahove with the aid of the principle of superposition as
follows:

If f(t) is a periodic function of ¢ with period T, that is,

e+ 1) =@

for all £, then f(¢) may be expressed as a Fourier series of the form

JO = z ane%‘t,

where (49)

2xjnt

L[® j0e T a
_ e e y
)

provided that f() satisfies suitable conditions? which are always satisfied
for practical driving functions.

! Both these assumptions are essential if the network is to have a steady-state
response at all, at least in the sense employed here.

% Sufficient conditions, general enough for the present purpose, were given by
Dirichlet. These are that

L fie+ 1) =f©®).

2. f(t) defined and bounded in the range —T/2 to 7/2.

3. f(2) has only a finite number of maxima and minima in the range —T/2 to T/2.

4. f(t) has only a finite number of discontinuities in the range —7/2 to 7/2.
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If w = 20/T then Eq. (49) may be written as

;0 = ) o,

— ®

where

T
I .
On = 7 ~Zf(t)e*"“”‘ dt.
3
But the response of the system to a signal a,e** applied at time { = — =
is, by Eq. (48),
ane™ Qi (Jnew) ;

hence, by the principle of superposition, the output response to the
periodic driving function f;(t) is

w0

T
a(t) = 2 et jnw) f e (50)
)

= — ©

1t may happen that only a few of the terms of this series are significant,
but often the series must be summed in closed form if the expression for
the response function is to be useful.

There is another method of tackling the steady-state analysis, based
upon a generalized form of the £-transform theory. This will now be
discussed and illustrated by a practical problem.

Let f(¢) be a periodic function with period T. The ‘“steady-state
Laplace transform” of f({) which, following Waidelich,* will be called the
§-transform and written symbolically

Slf(0)] = Filp), (81)
is defined by the equation
T
S = Fu(p) = ]; e~ (1) dt. (52)
The “inverse $-transform,” or ‘‘§~'-transform,” is given by
el 1 e*F (p)
) = §7F.(p)} = T /W T gor 9P (83)

For the inverse transform, the path of integration W in the complex
plane is the closed contour of Fig. 1-21 composed of Wi, W, and two

1D. L. Waidelich “The Steady-state Operational Calculus,” Proc. I.R.E., 34, 38—
83, February 1946. The treatment given in this section is based directly upon this
paper, and reference should be made to it for more complete references and for an out-
line of the proof of the results quoted.
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rectangular lines parallel to the real axis joining the ends of Wy and Wo.
In the limit in which these end points tend to infinity, the integral of
F,(p)er™/(1 — ¢®T) over those short rectilinear arcs is zero. The path
W,, to be used later, is the same as W, except that the direction is
reversed. All the poles of F.(p)/(1 — ¢ ?) must lie to the left of W
except for the points p = (jn2r)/T, where n is an integer, which must
lie between W, and W; If F(p)
has any poles on the imaginary axis
@t jopE——f—==q8+jwn or in the right half of the complex
plane, W; must be indented to ensure

that these poles lie to the left of W

The method of applying the §-

W, transform theory to the steady-state
solution of linear integro-differential
equations followsessentially the same

|
|
|
|
|
i
!
Jw i
i
-jw ) course as in the £-transform theory.
}
I
)
I
1
I
I
}
|

2w One takes the §-transform of both
sides of the equations, thus trans-
forming them into a set of algebraic
equations that can be solved for the
S-transform by the conventional
process. The § -transform is then
Fie. 1-21.—The $-transform contour. used to derive the final expression
for the steady-state response.
To carry out this procedure three theorems similar to Theorems 6, 7,
and 8 of Sec. 1-4 will be needed.
TaeoreM 6b. Apprtivity. If F.(p) = 8[f(¥)] and G.(p) = §lg(?)]
then

B Lttt . B=jon

$lf(t) + g(0)] = F.(p) + Gu(p). (54)

THEOREM 7b. §-TRANSFORM OF AN INTEGRAL OF A Funcrion. Let
J(&) be an E-function of period T and $-transform F,(p); if

g(t) = ¢g(0) + ﬁ f@t) dt,
then

1 — g?T F,
slo(01 = 2= g(0) + L) (55)
p p
TaEoREM 8b. $-TRANSFORM OF THE DERIVATIVE OF A FUNCTION.
If f’(t) is an E-function with period T and if f(t) has §-transform F,(p),
then

S (0] = pF(p) — (1 — e7?7)f(0). (56)
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The above theorems can be generalized by induction as were Theorems
6, 7, and 8.

At first sight it may be perplexing to see the occurrence of values of
f(t) at time zero. In a steady-state analysis one would not expect such
terms to be present. The difficulty is more
apparent than real, however, in that these
terms do not, in general, contribute anything
to the inverse $-transform. in G r c=

The above theory is best illustrated by

a practical example, which is taken directly
from Waidelich.? Fre. 1-22.—Two-node network.

L

Let a square wave current i(¢), where

iw=4, 0<i<i,

2
i(f) = —A4, §<t<T,

be applied to the network of Fig. 1-22. Then the voltage e(!) across
the network is given implicitly by

i = C'de(t)

t

+ Ge(t) +I’f e(t) dt — p,
0

where p is the current flowing in the coil at time ¢ = 0.

Taking the §-transform of both sides of the equation, and using the
results of Theorems 6b, 7, and 8b give

L(p) = (Cp +G+ -;;) E.(p) — [Cem) + %] (1 ~ o),

where e(0) is the voltage across the circuit at time ¢ = 0 and I,(p), E.(p)
are the §-transforms of i(f), e{t) respectively. Hence

L(p) + [Cem) + B] (1 — e»r)

Cp+4a + -
and
- pl.(p)e”
e(t) = §7E(p)] = e /W T+ Gp + CpHi(1 — e#7) dp

1 / o+ pCeO0) g
w

2rj JwT + Gp + Cp?
1 I'bid.
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The second integral has no poles inside the contour W; hence by Cauchy’s
theorem it is zero. Accordingly the initial conditions vanish from the
steady-state solution, and we get simply

pl.(p)e”
0 = 5 [, r o e o

But
T/2 e
L(p) = [ Aer dt — [ Ae=»t dt
0 T/2
A -2z _rT _eT A _pT
= = (1 ~ 2y . = 2 (1 — 2y = (1 — 22
P ( e ) » 2] ( e ) > ( e )
Hence
__pT
A(l — e 2 )‘Ze‘nl
o = 2rj /W r+Gp 4+ Cpi(l ~ ¢ PT) (57)

Equation (57) is an integral taken around a closed contour and is deter-
mined by the sum of the residues of the poles lying within. If this direct
method of evaluating the integral is chosen, however, the response func-
tion will be expressed simply as a Fourler series and the whole point of
introducing the §-transform would vanish.
Alternatively one ean proceed as follows.?

Since the integrals over the rectangular arcs joining the end points of

W, and W are zero in the limit when these end points tend to infinity,

1 E.(p)er , 1 E,(p)er”
o) = ) fw 1 —e»7 p 2nj Jw, 1 — e dp

Now
1 E(p)er 1 - _
— __1% t __}__ (-1 -
= % fm E,(pler dp + g /Wl E.(p)ert=" dp + +, (58)

where W, is the same path of integration as that of the £-transform; the
integrals of Eq. (58), therefore, may be evaluated in the same way as those
of Sec. 1-4. In particular we have

/ E,(p)ertdp = Q
Wi
fort < 0. Hencefart < T,

1 E.(per d
277 fw, 1 — e T

1
e(t) = o fW E(p)er dp —

t This method of solution can be followed in all cases and is not peculiar to the
problem at hand.
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In the particular case with which we are dealing,

_oT
ATy
E®) = v ¥ G + op?

and, for ¢t < T/2,

1 1 Ae?
_2?5/ Epledp = 55 /w.l“ ¥Gep+Cp P

thus, for 0 < ¢ < T/2,

O = / Aert dp _ i/‘ Aert(1 — & 2 )2
D= 05 | T TG T 05t 27 Jw, (T + Gp + CpiT — &) °P

(59)
Since
T
A d A(l — e 2)2
F¥Gp+rcpr ¢ [T+G6p +0p1 (T —e77r)

are both O(1/p), the two integrals of Eq. (59) can both be trans-
formed into contour integrals consisting of the infinite left-hand circle and
the straight lines W, and W3, respectively. The only poles of these func-
tions that lie inside these contours occur at the zeros of T' + Gp 4+ Gp?;
evaluating the residues at these poles gives

_mT T
sinnt +e 2 sin n(t — —)
_4am _, 2
e(t) = W € —T
1+ 2 2 cos( )+e""T

for t < T/2, where

if G2 < 4TC;

b b —al
e(t)=2A(Z‘fb)< o _£>
1+e 2 1+e 2

for t < T/2 and where a = m + jn, B = m — jn, if G* > 4TC.

1.9. The Fourier Transform Method.—Before the Fourier transform
or F-transform can be compared with the £-transform as a tool in solving
network problems, it is necessary to give a brief outline of the essentials of
the theory. In the introduction (Sec. 1-1) it was stated that there are
two alternative methods of deriving the transform theory; one based
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upon the steady-state analysis and the superposition principle and the
other, which was followed in the body of this chapter, formal and abstract.
The former method will be utilized here, partly to illustrate the principle
and partly because the simplicity of the discussion provides one of the
chief arguments for the F-transform.

In See. 1-8, where the steady-state analysis was diseussed, it was
shown that a periodic function with period 7' could be expressed as a
Fourier series:

o

10 = ) aneteive,

~

where

&= /_Zf(t)e dt,
2

provided that f(¢) satisfies certain conditions.

Now an aperiodic function can be regarded as the limiting case of a
periodic function whose period T is allowed to extend to infinity. For-
mally, then, the extension to nonperiodic functions is made by allowing
T to tend to infinity, in such a way that

w = ?_7]["7} and lim (27}) = da.
If the sum is replaced by an integral, one gets in the limit

10 = g [ Pt as,

where

Fjw) = /_: Ft)eiet dt. (60)

F(jw) is the simple double-sided! Fourier transform of f(¢), and is in fact
usually just referred to as the Fourier transform of f(¢).

The basic Fourier integral theorem of Eqg. (60) is not, of course,
proved by an argument of the above kind, which, as presented here, has
only dubious validity. But the foregoing discussion is valuable in that

! Double-sided because the limits of integration of the defining integral of F(juw) go
from — « to «. In the single-sided definition used in the &£-transform case, the
integration limits go from 0 to «. If f(t) = 0 for ¢ < 0, it is, of course, immaterial
whether the single- or double-sided transform be used.
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it traces the direct connection with the steady-state analysis, which will
now be used to give the transient response of the general linear network.!
In Sec. 1-8 it was shown that if the network was dissipative, the output
response after a sufficiently long time to a driving function E(jw)e’! is of
the form
E(jw)ei Q2 (jw),

where Q;,(jw) is the appropriate system funetion.
Let it now be assumed that a driving function f(¢) be applied to the
network, where f(¢) is defined for all real values of ¢, positive and negative,

and is such that f_w /(! dt converges. Now by the Fourier integral

theorem f(f) may be regarded as a continuous sum of sinusoidal generators,
each of which is applied to the network at time { = — «. To find the
response of the network to this system the superposition principle is
invoked, in a more powerful form than we have proved it valid in See. 1-3,
to state that the network response may be regarded as the sum (or integral
in this case) of the response to the individual component generators.
Now for ¢ > 0 the response of the network to a sinusoidal generator ap-
plied at time ¢ = — « is simply the steady-state response. Accordingly,
if

E(jw) = /_: f()eiet dt, (61)

the transient response of the network may be written

W= o / B Qi) dus (62)

this integral can be evaluated by the theory of residues as given in Sec.
1-4, provided that the integral of the integrand of Eq. (62) taken around
either the upper or lower infinite half circle is zero.

The most attractive point about this solution is its extreme simplicity.
The integro-differential equations of the network have not been intro-
duced at all, and there has been no need to discuss the condition of the
system at time { = 0. Nevertheless a considerable price has been paid.
The function f(¢) must now be defined for all real values of ¢, not only for
positive ones. This might not appear a serious hardship, as it is usual to
take f(t) = 0 for ¢t < 0 in the £-transform theory, but unfortunately it
means that the initial conditions are fixed by the form of f(¢) and can no
longer be chosen arbitrarily. Another disadvantage is that the restric-

1 See E. C. Titchmarsh, Intioduction to the Theory of Fourier Integrals, Oxford,
New York, 1937, for a full theoretical treatment of this theory. It isshown there that

/ N Lf(1)] dt must be convergent if the relationship is to hold.
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tions on the form of f(t) are much more severe, at least in the simple
theory, because it is now necessary that f_: |f(t)] dt converge, thus exclud-

ing a whole range of useful functions from discussion.

The second disadvantage can, however, be overcome at the cost of
increased complexity. Thus the range of driving functions can be con-
siderably extended if instead of a function

e(t) =0, t <0,
et = f©, t>0,

one considered the function

e(t) =0, t <0,
et) = fHee,  t>0.

@

Then, even if f(t) = O(t*), / |f(He= dt converges for all¢ > 0. The

response to the modified function can be found; and then after the inte-
grations have been performed, ¢ can be allowed to tend to zero.

A more powerful attack, which will, in fact, do everything that can be
done by the £-transform theory, can be based upon the ‘“generalized
Fourier transform’” defined by

F(ju) = ﬁ T feeror i, (63a)

where

f(t) = —21; / F(jw)e(c+1-m)t dw, i > 0, (63b)

provided that [) " |f(t)|e=* dt converges.

This transformation® can be applied to the integro-differential equa-
tions exactly as was the £-transform, and the solution follows along
virtually identical lines. Initial conditions can now, of course, be chosen
arbitrarily. The generalized Fourier transform method has, however,
no advantage over the Laplace transform method. ‘

The above discussion brings out the fact, emphasized in Sec. 1-1, that
although the simple Fourier transform can be used to handle a restricted
class of network transient problems, the £-transform provides a compact
analysis of greater power and scope.

This last statement must not, however, be interpreted as implying any
essential mathematical difference between the two, for, on the contrary,
they are closely interconnected. Thus formally, at least, the £-transform

! See tbid., where this method is actually applied to solve a set of integro-differential
equations.
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can be obtained from the generalized F-transform by a shift of origin and a
rotation of axes through =/2.

It is necessary to make this point because in some treatments the
Fourier and the Laplace transforms are compared as if they were distinet
mathematical tools. This attitude is inadmissible. As the previous
discussion was intended to show, the difference between the two trans-
forms lies in their scope and in their historical background, not in their
mathematical nature.

1.10. Summary of the Use of £-transform Theory in Network Prob-
lems.—In order to place the theory upon a sound footing and at the same
time display the fundamental properties of the Laplace transform in a
clear light, care was taken to develop the mathematical analysis of Sec.
1-4 on a rigorous basis.

Many readers, however, will be interested in the Laplace transform
only as a tool in the solution of practical network problems and be willing
to take the validity of the theory for granted. Accordingly, this section
has been written as a guide to the location of the more important results,
which are scattered throughout the chapter, so that the reader may use
the Laplace transform method with the minimum of theory.

The problem is that of finding the output response vi(¢) of a linear net-
work to a driving function 7;(¢) applied at time ¢ = 0, when the initial
charges on the condenser and the initial currents through the inductors
are given.

The first step is to find the Laplace transform

0

Ii(p)y = £li;(0] = ﬁ e?;(t) di (64)

of ¢;(z). This may be done either by direct integration as in Eq. (64) or
by reference to Table 1-5if #;(¢) is one of the standard forms there tabulated.

The next step is to set up the transform network. In the case when
all the initial conditions are zero, this can be done simply by replacing
all the inductors, capacitors, and resistors by their p-impedances or
p-admittances! and the driving function 4;(f) by its Laplace transform I;(p).
When the initial conditions are not all zero, the driving transform func-
tions have to be suitably modified, as is discussed for the general mesh
(nodal) case in Sec. 1-7. Applications to particular networks are in Sec.
1-5 above and in Sec. 1:11 below. The transform output response is
found by the conventional steady-state analysis and will be of the form of
Eq. (41).

It now remains only to evaluate v,(f). As shown in Sec. 1-4, v (1) is
given in terms of Vi{p) by the explicit relation

1 See Sec. 12 for a definition of these quantities.
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1 ctj= )
u(t) = pae /;_jw Vi(p)e dp, (65)
where ¢ is a real positive number such that all the poles of ¥V (p) lie to the
left of ¢ in the complex p-plane.

Integrals of the form of Eq. (65) were evaluated in Sec. 1-4 with the
aid of the theory of residues, and a general expression was obtained for
v:(f) when V. (p) was the product of an algebraic and a regular function.
All the response transform functions considered in this chapter are
of this type, and the principal results are restated here for convenience.

Two alternative cases exist:

1. pVi(p)er* is bounded for all R(p) > ¢. In this case »(t) = 0.
2. pVi(p) is bounded for all sufficiently large p in the half plane
R(p) < c¢. In this case v(t) = Z residues of the poles of Vi(p)er:.

If Vi.(p) is the product of an algebraic and a regular function, it can
be expressed in the form

Vilp) = 6{%)!)_;"

g=1
where H(p) is bounded and regular for all finite p.
The poles of Vi(p) occur at p = ps(1 = 1, - - -, n), and the residue
of Vi(p)e?* at p = p, is

1 dr,—l

T = Dldpt (Vi (D)e? ] pmpay (66)
where
Vi) = Vilp)(p — p)™; (67)
thus
wlt) = 2 (rs — )1 ! dpf- [VkS(p)ep‘]p—p. (68)

The above procedure has been discussed in greater detail but along
essentially the same lines in the main body of the text. In Sec. 1-111itis
applied to two practical examples.

1.11. Examples of Use of £-transform Theory to Solve Practical
Network Problems. Response of an n-stage RC-coupled Pulse Amplifier
to a Unit-step Function.—The first problem to be considered is the voltage
response developed across the anode of the last tube of the amplifier
chain of Fig. 1-23, when the input voltage e(t) is a step function of unit
height. It will be assumed that all the stages are identical. Let +.(f) be
the plate current of the rth tube, with £-transform 7,(p), and let e,(¢) be
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the voltage developed across the anode lead of the rth tube, with £-trans-
form E,(p). Then the transform network assumes the form of Fig. 1-24.
If the tubes are pentodes, the output plate conductance can be neglected
in comparison with 1/R, and
I..(p) = ngr(p) (r= 0,:-,n— 1);
3,0 i, o)

]

[0} 82(”
21 ]» €1 3 4

Fig. 1-23.—The n-stage RC-coupled pulse amplifier.

ot
=

Ip) Itp) I
— ——— —
.ll E,(p) ':_1_l ) ‘;;%F‘_lfp) 1'1| Il..(p)
b 3] b33 b3 T
The JRr: o %

Fia. 1-24.—The n-stage RC-coupled pulse amplifier transform,

in addition one has the n equations

Em) ==t
R+Cp

By a simple process of elimination one gets

_ {(g.R)"E(p)
B®) = (05 CRpy

Now, since
e(t) =0, t <0,

=1, t>0,

one can write

® 1
F = —pt = ==
(») A e*dp »

thus e,(f), the response function that equals £-[E.(p)], is given by

cFi= n
o) = L / _lgnR)re
2nj Je—j= p(l + CRp)
Normalizing by putting t = ¢{/RC and e,(i) = e,({)/(g-R)", one gets

ert

1 /C+jm
() = =— _ ——dp.
<0 =5 ). BT TP
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Now pE.(p) is bounded for all » and all sufficiently large p; hence, by the
results of Sec. 1-4,

nt

ea(l) = z residues of poles of m-

But e?*/p(1 4+ p)" has a pole of order unity at p = 0 with residue unity
and a pole of order n at p + 1 = 0 with residue

1 dnt (el”)
(n=1Vdp" 7t \p Jpmua
Accordingly,
H =1+ 1 dr? (e’")
en() - ( 1)' dp,,_l o 1
n—1 dr 1 dr—1
1 ’+" - - ppt
Z(" 1>'( ’ )[dp’pdp""‘l ‘ L_l
\ n— I\[(—D! -
1+ E (n — 1)!( r )[ s ‘6”‘]p_~1
tn-—'r—
_1—etz(n—r—1)'

e.(t) is plotted as a function of { in Fig. 1-25 for values of n from 1 to 10.

1] /,5%/L j%/a/ﬁ’/"

osl_L /] AL 7 ///7/ g
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o.s/ /,/[// ////
1 NANAAX X AN
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VYNV AN
o A AT

Time (¢ /RC)
F1a, 1-25.—Response to a step function current of the n-stage RC-coupled pulse amphﬁer
of Fig. 1-23.
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Response of Four-terminal Network to a Unit-step Function.—To con-
clude this chapter, the £-transform theory will be applied to find the out-
put response e,(f) of the four-terminal network of Fig. 1-26 to a unit-step
constant-current driving function ¢(£). This circuit! has a very good rate

\l

~ Cz=1
et

Fia. 1-26.—Four-terminal linear-phase coupling network.

of rise and extremely small overshoot. To evaluate the response
numerically, the following normalized values for the circuit constants are
taken:

C =05, C, = 0.22, C,=1,

L1 = 027 Lz = 0.7, R ].

I,(p), the transform-drive function, is 1/p. The transform network is as
shown in Fig. 1-27, and will be analyzed on the nodal basis. The circuit

node 1 1/Lp  node 3
[
Cp 1/R 1
T node 2 Cz; ™~
1,0 E,(p
G T 1/Lp
- -

Fi1g. 1:27.—Transform of the network of Fig. 1-26.
has three independent node pairs as marked in Fig. 1-27, and, from the
general transform Eq. (40) in the nodal case,

I(p) = YuEi(p) + YiE:(p) + Y 1:Ea(p),
0= Y21E1(P) + YzzEz(P) + YzaEs(P),
0 = YuFEi(p) + YsE:(p) + Y3sEs(p),
where the Y; are given by Eqgs. (38a). If A(p) is the determinant of the
array Y;;(p) and A13(p) the cofactor of ¥i5in A(p), then the equation can
be solved to give

1 R. L. Dietzold, Bell Telephone Laboratories, personal communication.
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Ei(p) = ————11(22(2)”(7)).

In the present case this may be expanded to give

1 1 1
; Cxp+l—3+m
1
- 0
1 L
Es(p) = - P
Plop + & + . -~
PTR R Ip
1 1 1
B 01P+R‘+L—5
1 1

- IEJ (RL:C1p* + Lip + B)(RLAL\CC:Cap® + LA Co(Cy + C)pt

+ RL[LCC2 “l" L10102 + L;CCl]pa + L[LCz + L1(C + C1 + C2>]p2
+ RL(C + Cy)p + L}

Substituting the numerical values of the circuit elements,

Ey(p) =
2.8571p? + 12.987p + 64.9351 _
P(p® + 6.5454p° + 27.0130p° + 67.7922p% + 97.4026p + 64.9351)

Now pE;(p) is bounded for all sufficiently large p, so that
es(t) = 2 residues of poles of Ei(p)e?t.

To find the poles p, of E;(p), besides the simple pole at p = 0, it is neces-
sary to solve for the roots of the 5th-degree polynomial in the denominator.
By Newton’s method of approximation, one of the roots, p; for example, is
found to be —1.892. Dividing the polynomial through by p + 1.892, we
obtain the 4th-degree polynomial

p* 4+ 4.6534p® 4 18.2088p* + 33.3412p + 34.3210,

the roots of which can be found by the standard formulas for quartic
equations. Then the poles of E3(p) lie at the points

p =0,

p1 = —1.892,
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pr = —1.420 + 1.2775,  pa
ps = —1.420 — 1.2775,  ps

—0.907 + 2.9317,
—0.907 — 2.931;.

All these poles are of order unity, so that the residues

b, = e*E3(p,)(p — pr)

can be found by substitution. This procedure is simplified by noting that
since ps, ps and py, ps are pairs of complex conjugates, by, bs and by, by must

12

10 /

08

04 [
' /
Y
02
0

0 04 08 12 16 20 24
t/[RIC;+%,C,))

F1a. 1-28.—Response to step-function current of four-terminal linear-phase network.

also be pairs of complex conjugates. The following values are obtained
for the b's:

bo = 1,

by = —1.509¢~ 1802,

by = +(0.1716 -+ 0.9698j)e—\-420+1.277>¢,
bs = (0.1716 — 0.9608;)e~(1-120+1.2770¢,

by = (0.083 — 0.044f)e=(0sor+z0310
b5 = (0083 + 0l044j)e—(0.907+2.9311')¢;

5
thus, since e;(f) = z b.,
r=0

es(t) = 1 — 1.509¢1-39% 4 ¢—0997(0.1666 cos 2.931¢ 4 0.0885 sin 2.931%)
+ e714206((.3432 cos 1.277¢t — 1.9396 sin 1.277¢).

This function is plotted against ¢ in Fig. 1-28.
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TaBLE 1-5.—List oF LAPLACE TranNsFORM Paigrs

No. Fi69] F(p)

1 1 1
D

2 at lim —%

® a— o P + a

3 et !

P —a
. 8

4 sin Bt m
P

5 cos ft m
. B

6 sinh 8¢ ?TB;
P

7 cosh Bt ;r.ﬁ":
1
8 b4 1')—2

!
9 i ;7% (n a positive integer)
n! e

10 ire~® b F o (n a positive integer)

11 |7 =0,2<1 e’
=1t>1 P

12 {7/ =1,t<1 1—e>
=0,t>1 P

13 |f@) =t t<1 1 —-(14ple?
=0,1>1 p*

4 |ft) =0,t<1 P e
=4t>1 » P

15 J7) =t <1 1 —evr
=1,t>1 p*

16 (f) =t <1 -
=2-41<i<2 =y
=0,t>2 L

17 |fi) =1 -t <1 1 (1 —e?)
=0,1>1 p P




CHAPTER 2
HIGH-FIDELITY PULSE AMPLIFIERS

By RoBerT M. WALKER AND HENRY WALLMAN

2.1, Introduction.—Pulse amplifiers are employed in various branches
of physical investigation, in radar and television receivers, and in certain
new types of communication equipment (pulse-time modulation, fac-
simile, ete.). '

The subject of the next two chapters is the amplification of direct
pulses, the amplification of pulses of a carrier frequency being considered

10 Overshoot
oof T
———
0.1
0 1000 u sec g_l L 14 sec
Rise-time
@)
—_
sag
— L —
0 1000 « sec 0 IOOOW
1]

Fia. 2-1.—Reproduction of a rectangular pulse. (a) Reproduction of the leading edge
of a rectangular pulse. Note the rise time and the overshoot. If the amplifier is linear
and the pulse duration is large compared with the rise time, the reproduction of the trailing
edge is the negative of the leading edge. (b) Reproduction of the flat top of a rectangular
pulse. Note the sag. If the amplifier is linear, the amplitude of the undershoot following
the pulse is equal to the sag.
in Chaps. 4 through 7. This chapter is concerned with pulse amplifiers
of high fidelity; Chap. 3 describes pulse amplifiers of lower fidelity but
much greater dynamic range.

Emphasis on the Time Domain.—The emphasis in this chapter is
mainly on the time response of amplifiers, that is, upon the shape of the
output waveform as a function of time for appropriate pulse input. This
approach is chosen because it is really only the time response that is of any

1 Sections 2-1, 2-2, and 2-3 are by Henry Wallman; the remainder of the chapter is

by Robert M. Walker.
i
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interest to the user of pulse amplifiers; the familiar amplitude- and phase
frequency curves are merely means to the end of good pulse response, and
should be regarded as matters of subordinate interest.

Reproduction of Rectangular Pulses.—There are many types of pulses—
rectangular, delta-function, sawtooth, rounded, etc.—in common use,
and in a linear amplifier the response to any one of them completely
determines the response to any other. In this discussion the rectangular
pulse is used as the standard input signal. A rectangular pulse is the sum
of a positive step function and a delayed negative step function; hence
its reproduction by a linear amplifier is the sum of the response to a posi-
tive step function and a delayed negative step function.

The reproduction of a step function can be divided into two distinct
parts, namely, the reproduction of the leading and trailing edges and the
reproducticn of the flat top (Fig. 2-1). These two aspects will be
considered in order.

2:2. Leading Edge of Pulse; Rise Time and Overshoot.—The most
important characteristics of the reproduction of the leading edge of a

rectangular pulse or step function
are the rise time, usually measured
L

from 10 to 90 per cent,! and the

“overshoot” (see Fig. 2-1a).
B, A third characteristic is some-
G times also of importance, namely
Input —— outpat the time duration over which the
voltage | 233 votage  amplitude of the overshoot oscilla-
~C. I tions is appreciable. The problem

R ]\Ic‘E §R, is to minimize these three param-
=

eters: rise time, overshoot, and
overshoot-oscillation duration.

RC-coupling.—The basic pulse-
amplifier stage is shown in Fig. 2-2.
A tetrode or pentode is usually used
if the gain is at all high, since triodes would have very high input
capacity because of the Miller effect.

When the reproduction of the leading edge is of interest, the circuit
may be simplified as shown in Fig. 2-3.

The capacity C is the total interstage shunt capacity and is made up of
the sum of the output capacity of the first tube, the input capacity of the
following tube, and stray wiring capacities.

F1a. 2-2.—Basic pentode amplifier.

1 Other definitions of rise time are occasionally used, such as the intercept of the
tangent drawn through the 50 per cent point of the step-function response. For
some applications it is desirable to measure rise time between the 5 and 95 p.~ cent
points or the 1 and 99 per cent points.
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A voltage step function applied to the grid of the tube results in a
current step function applied to the parallel RC-combination. It is
the resulting voltage developed across the RC-combination that is the
desired amplifier response. If the ‘
load resistor R is small compared =
with the plate resistance of the tube ¢ % é
(this is always the case for high-

speed pentode stages), the stage (o
gain (= voltage amplification) is o— T

Gain = g.R,

where g.. is the transeconductance of
the tube. The step-function response is an exponential curve, free from
overshoot, as shown in Curve 1 of Fig. 1-25. Its rise time is given by

R

(1) Fia. 2-3.—Simplified circuit of pulse-amplifier
stage employing RC-coupling.

Rise time = 2.2RC. @)
Dividing Eq. (1) by Eq. (2) yields

Gain _ gn
Rise time =~ 2.2C @)

The right side of Eq. (3) is a figure of merit for the amplifier tube.
The gain/rise time ratio has a value of about 200/ usec for type 6AKS5 tubes
if it is assumed that g, = 5000 gmhos and C = 11.5 yuf. Therefore with
an RC-coupling between two type 6AKS5 tubes, a gain of 10 with a rise
time of 4% wsec or a gain of 2 with a rise time of
T psec., ete., can be obtained.

For laboratory purposes or whenever reduced
tube life can be accepted, the figure of merit for type
6AKS5 tubes can be increased to about 280/usec by
reducing the bias and thereby increasing ¢,.

Shunt Peaking.—The question arises as to what
can be done to improve the gain/rise time ratio by
use of circuits other than the RC-circuit. The next
Fra. 24— Shunb- simples.t cirf:uit is the so-called shu_nt—peaked circuit

peaked circuit. shown in Fig. 2-4, for which the significant param-

eter is the ratio m = L/R*C.

A family of step-function responses is shown in Fig. 2:5. There is no
overshoot for m £ 0.25. The performance of this circuit for various
values of m is shown in Table 2-1. For m = 0.41, for example, Fig. 2-5
shows that a gain/rise time ratio between type 6AKS5 tubes of 1.7 X 200
= 340/ usec can be attained, accompanied, however, by an overshoot of 2.5
per cent.
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TaBLE 2-1.—PERFORMANCE OF SHUNT-PEAKED CIRCUIT

Relative speed Overshoot,

m (referred to RC-circuit) %

0 1.0 0
0.250 1.4 0
0.414 1.7 3.1
0.500 1.9 6.7
0.600 2.1 11.4

Figure 2-5 demonstrates that the rise time can be reduced at the
expense of increased overshoot. The proper compromise between speed
and overshoot depends on various external factors. It is common to
regard overshoots of 40 or 50 per cent as acceptable in servoamplifiers,
whereas in television amplifiers perhaps 5 to 10 per cent is all that should
be tolerated, and in certain measuring apparatus only about 1 per cent.

1.2
- //'\
10 /4
> m=0.60
08 I % 00
: 041
N
I / N\ 8.25

0 1 2 3 4 5 6 7 8 9 10
t/RC

Fia. 2-5.—Response of shunt-peaked circuit to a step funection of current.

Within the restriction of two-terminal coupling networks little
improvement can be attained over shunt-peaking. However, there is
one other two-terminal network (Fig. 2:6) that is worthy of mention.
The steady-state performance of this network! gives it its name. Its
step-function response (Fig. 2-7) has only 1 per cent overshoot.

Although the increase in performance of the circuit of Fig. 2-6 over
that of the m = 0.41 shunt-peaked circuit is not very great, the extra
complication is not great either; it is usually possible with a little ingenu-
ity in layout to realize the capacity across the peaking coil as a stray
capacity, so that no additional parts are required.

1 3. Doba, Bell Telephone Laboratories, private communication.
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Four-terminal Coupling Networks.—To get substantial improvement
over the performance figures given in Table 2-1 it is necessary to go to

four-terminal networks, that is, to
make use of the partition of the
interstage capacity between an in-
put and an output capacity. A good
example of such a circuit is the four-
terminal linear-phase circuit shown
in Fig. 1-26. The step-function re-
sponse of this circuit, shown in Fig.
1-28, exhibits an advantage in
gain/rise time ratio of 2.48 as com-

T 5

022¢C I 0.35 R2C

F1g. 2:6.—Two-terminal linear-phase
network,
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Fi1. 2:7.—Response of two-terminal
linear-phase network to a step function
of current. Gain/rise time advantage
over the RC-vircuit is 1.Y7; overshoot is

1 per c

ent.

pared with the RC circuit, and this ratio is accompanied by an overshoot

of only 1 per cent.

The great speed and small overshoot of this circuit make it very

attractive. However, as with all
four-terminal networks, a certain defi-
nite capacity ratio is assumed, in this
case §. By the reciprocity theorem
it is possible to reverse the network,
thereby accommodating a 2/1 capac-
ity ratio; but for capacity ratios differ-
ing from either § or 2, other circuit
configurations must be employed. No
such consideration is involved in the
use of two-terminal networks, and the
need to employ a different configura-
tion for a different capacity ratio may

375R
LI
115R2C
A4 R 1
-~C CZ"\
2
055C 02R“C
Fia. 2-8,—Four-terminal network de-

signed for 1/1 capacity ratio.

be regarded as the price of the increased performance of four-terminal

networks.

A four-terminal network designed for 1/1 capacity ratio! is shown in

1E. A. Schramm, Bell Telephone Laboratories, private communication from R. L.
Dietzold. The curves of Fig. 2-9 are due to A. J. Grossman of the Bell Telephone

Laboratories.
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Fig. 2:8, and its step-function response is shown in Curve « of Fig. 2-9.
Curve a of Fig. 29 shows an advantage of 2.1 in gain/rise time ratio as

12
1.0 /1\(_
/ \__)—f::_
/ ]
@& (a) (e) |
= 0.6
0.2 /
0
a 05 1.0 15 20 23 30 35 40
t/[R(C +C))

Fia. 2.9.—Response to current step function of network shown in Fig. 2:8. (@) C: = O;
) Co = C/2; (¢) Ca2 = 20.

compared with the RC-circuit and has 2 per cent overshoot. Curves (b)
and (¢) of Fig. 2-9 show the effect of designing the circuit for 1/1 capacity
ratio when the actual capacity ratio is 2/1 or 1/2, respectively.

" The somewhat simpler circuit shown
AAA— in Fig. 2:10, called the series-shunt
peaked circuit, was widely used at the

ngz\ Radiation Laboratory. Its step-fune-

B¢ tion response is shown in Fig. 2-1la.

8 2 L Curve a of Fig. 2-11 shows an advan-
TG 7T~C  tage of 2.06 in gain/rise time ratio
7 compared with the EC-eircuif and has

3 per cent overshoot. Curve b of Fig.

211 shows the effect of a left-hand
capacity that is only half the right-hand
capacity. For many applications the step-function responses of Curves
b of Figs. 2-9 and 2-11 are entirely satisfactory. Although the circuits of
Figs. 2-8 and 2-10 give substantially poorer performance than the circuit

F1g. 2:10.~—Series shunt-peaked circuit.
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shown in Fig. 1-26, the latter circuit is less tolerant with regard to capacity
ratio.

Composition of Rise Times.—It is of interest to know how the rise
times of the individual stages combine in multistage amplifiers. A very
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F1a. 2-11.—Response to current step function of series shunt-peaked circuit shown in
Fig. 2:10. (a) C1 = C; (b) C1 = C/2.

good answer can be given to this question when the individual stages are
free from overshoot. The result is as follows:

Ruie 1.! For an amplifier made up of n stages, each of which is
free from overshoot, rise times add in the root-square, that is,

= VAFAF @

where 7 is the over-all rise time and 7, 72, . . . , 7, are the rise times of the
individual stages.

For the special case in whichr; = 7 = .- -+ + = 7,, Eq. (4) reduces to

=7 4/7. (5)

Equation (5) shows, for example, that if a nine-stage amplifier made
up of identical stages free from overshoot is to have an over-all rise time
of ¥y usec, each stage must have a rise time of g% usec.

1 Rule 1 represents not the result of observation of many special cases but has a
solid mathematical basis; it is in fact a translation into the language of transient
response of the “central limit theorem’’ of probability, stated by Laplace in 1812.

Rules 2, 3, and 4 given below are essentially the results of observation of special
cases.

All the rules given here, Rules 1 through 6, are safely applied only to minimum
phase-shift networks.
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Equation (4) is actually a statement of a trend in the limit, as n
increases indefinitely, and for any finite value of 7 is only approximate.
However, the approximation is very good, usually within 10 per cent, even
for values of n as small as 2. This fact is illustrated in the following
listing, taken from Fig. 1-25, of rise times of identical cascaded RC-coupled
stages (Table 2-2).

Tasre 2-2.—Rise Times oF Cascapeb RC-coUPLED STAGES

n 11231456178 9 10

Relative rise time (in units of 2.2
RCY. ... 1.0/1.5/1.9/2.2/2.5{2.8/3.0{3.3/3.45(3.6

For stages having nonzero overshoot, there is no clean-cut rule cor-
responding to Rule 1. However the following rough statements can be
made:

RuiLe 2. For stages having very small overshoot (1 or 2 per cent)
the overshoot grows extremely slowly or not at all as the number of
stages increases, and Eq. (4) still holds.

Ruie 3. For stages having overshoots of about 5 to 10 per cent,
the overshoot increases approximately as the square root of the number of
stages, and the rise time increases substantially less rapidly than as
the root-square.

Rule 3 can be illustrated by two tables. The first, Table 2-3, taken
from Fig. 7-5, describes cascaded transitionally coupled double-tuned
stages.

Tasre 2:3.—Rise TiMe or Cascapep TransmmioNaniy CourLep DOUBLE-TUNED

Staces
No. of stages Overshoot, % Relative rise time
1 4.30 1.00
2 6.25 1.32
4 8.40 1.69
6 10.00 1.95

The second table, derived from Figs. 2-13 and 2-14, describes cascaded
two-terminal networks of maximum gain-bandwidth product (Table 2+4).
These two tables illustrate the general principle that amplifier speed,
especially in multistage amplifiers, can be substantially increased if over-
shoot requirements are relaxed; not only can the rise time per stage be
reduced, but the over-all rise time is not very much larger than the rise
time of one stage.
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TaBLE 2-4.—Rise TiMe oF Cascapep Two-TeaMiNAL Cirevrrs oF MaxiMum GAIN-
BANDWIDTH PrODUCT

No. of stages Overshoot, %, Relative rise time
1 8.4 1.00
3 15.2 1.45

A large number of examples of step-function responses of multistage
amplifiers is given in two very valuable published papers.!

Rise Time Reguired in Measuring Apparatus.—When pulses are known
to have & certain rise time, Eq. (4) can be used to determine how fast the
response of the measuring apparatus should be in order to cause negligible
slowing of the pulses being measured. Equation (4) shows that if the
response of the measuring apparatus is twice as fast as the input pulse, the
output pulse rise time is increased by only 11 per cent; if the measuring
apparatus is three times as fast as the input pulse, the output pulse
rise time is lengthened by only 5 per cent. Thus it can be said that for
most purposes an amplifier two to five times faster than the pulses being
measured can be regarded &s infinitely fast,

Egquivalent Rise Time of o Cothode-ray-tube Spot.—A cathode-ray tube
does not have infinitely sharp focus; because of the coarseness of its spot,
an intensity-modulated cathode-ray tube must be regarded as an example
of a pulse-measuring instrument of nonnegligible rise time. The equiva-
lent rise time iy easily computed. I the spat is assumed to have radial
symmetry with an approximately Gaussian-error-curve intensity dis-
tribution, the spot may be regarded as the reproduction of a delta-func-
tion impulse by an equivalent Gaussian-error-curve filter. The rise time
of the step-function respomse turns cut te be about equal to the time
required for the electron beam to move a distance equal to the spot
diameter at the writing speed in use (the spot diameter iz measured
between the 50 per cent points on its intensity-distribution curve). The
equivalent rise time is thus given by

Spot diameter

Swoep longth < [\IBe per sweep length.

In a radar presentation employing a 10-mile sweep on a plan-position
indicator (PPI), the time per sweep length is about 100 usec and the
ratio of spot diameter to sweep length is about 1/200, (The constants
pertaining to a 5-in. tube employing a P7 persistent screen might be as
follows: spot diameter = 0.3 mm; sweep length = 60 mm, both con-

tH. E. Kallmann, R. E. Spencer, and C, P. SBinger, ‘" Transient Response,” Proc.

I.R.E., 33, 169-195 (1945); A. V. Bedford and (. L. Fredendall, “Transient Response
of Multistage Video-frequeney Amplifiers,” Proc. J.R.E., 27, 277-284 (1939)
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stants being proportionately larger for a 12-in tube.) Hence the equiva-
lent rise time of the cathode-ray tubeis 0.5 usec. The preceding paragraph
indicates that there is little point in this case in providing the pulse
amplifier with an over-all rise time less than about 0.2 usec.

Relations between Steady-state and Transient Responses.—So far in this
chapter nothing has been said about the amplitude-frequency or phase-
frequency characteristics of pulse-amplifier stages, on the grounds that
they are of no direct interest to the user of pulse amplifiers. For two
practical reasons, however, it is now desirable to discuss these matters.

The reasons are those of inadequacy of instrumentation, namely, the
inadequacy at the present time of equipment for (1) experimentally
measuring the pulse response of one stage of a really fast multistage
amplifier and (2) mathematically computing the over-all pulse response of
a multistage amplifier made up of complicated individual stages. It can,
however, be expected that both these deficiencies will be overcome in the
next few years.

1t is, of course, true that the pulse response of a linear amplifier can be
exactly computed from its amplitude-vs.-frequency and phase-vs.-fre-
quency curves, but the following qualitative rules are often usefal:

RuLE 4. If 7 is the rise time, 10 to 90 per cent, of the step-function
response of a low-pass amplifier without excessive overshoot and having a
3-db bandwidth ®, then!

T® = 0.35 to 0.45.

RuiLe 5. The following three characteristics of an amplifier go
together:?

1. Small overshoot (not more than about 1 or 2 per cent).
2. Amplitude-vs.-frequency curve approximately gaussian.
3. Phase linear over the pass band.

An illustration of Rule 5 is given in Fig. 2-12, which shows curves of
absolute value vs. frequency and phase error vs. frequency (i.e., phase
deviation from linearity) for a number of circuits whose step-function
responses display small overshoot. The curves have been normalized
to have their 3-db points at f = 1. Especially noteworthy is the closeness
of fit, down to —10 db, among the Gaussian error curve and the ampli-
tude-vs-frequency curves for the two- and four-terminal linear-phase
networks. For contrast the absolute-value and phase-error vs. fre-

! For overshoots of less than 5 per cent the value 0.35 is the one to take.

A consequence of Rules 1 and 4 is that for eircuits leading to zero or very small
overshoot, the bandwidth inevitably decreases as the square root of the number of
stages.

2 Rule 5, like Rule 1, is related to the central limit theorem of probability.
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quency curves are given for a circuit having 4.3 per cent overshoot (see
Table 2-3).

M azimum Gain/Rise Time Ratio.—It would be very valuable to have
theorems on the best possible gain/rise time ratio corresponding to Bode’s

N
I

Phase error
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Fig. 2:12.—Normalized absolute value and phase error curves. (a) Gaussian error
curve, overshoot = O per cent (phase assumed linear); (b) RC-cireuit, overshoot = 0 per
cent; (¢) two-terminal linear-phase network, overshoot = 1 per cent; (d) four-terminal
linear-phase network, overshoot = 1 per cent; (¢) low-pass equivalent of transitionally
coupled double-tuned circuit, overshool = 4.3 per cent.

theorems! on the best possible gain-bandwidth product. It is clear that
the problem is very difficult, even to formulate, particularly because the
attainable gain/rise time ratio depends on the permissible overshoot.
What is needed is a graph showing the largest possible gain/rise time
ratio as a function of the fractional overshoot. An especially significant

tH. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York, 1945, Chap. 17. The results are as follows: Consider low-pass interstage
networks having input and output capacities C/2. Then if a simple RC-circuit has
its 3-db point at a frequency wq, interstage networks exist having flat gain out to we
and with advantages ip voltage gain over the RC-circuit of 2 and #?/2 = 4.93 for the
two-terminal and four-terminal cases respectively.

By using nonidentical stages, which are not individually flat in gain but which
have an over-all gain curve that is flat, W. W. Hansen ['On Maximum Gain-band-
width Product in Amplifiers,” Jour. Applied Physies, 16, 528-534 (1945)] has been
able to obtain a mean stage gain times over-all bandwidth improvement factor for the
four-terminal case of 5.06 as compared with the simple RC-circuit.
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point on such a graph would, of course, be that corresponding to zero
overshoot.

Figures 2-13 and 2-14 are of interest in this connection. The imped-
ance of the two-terminal network of maximum gain-bandwidth product!
is of the form 1/(p + +/1 4+ p*), and the impulse response has the
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Fic. 2:13.—Response to step-function
current of two-terminal flat-gain network of
maximum gain-bandwidth product. The
overshoot is 9.4 per cent, and the gain/rise
time advantage over a parallel RC-circuit

3.0 4.0 5.0

equation? Ji(¢)/¢; the graph of
Fig. 2-13 is derived by integrating
Ji()/t and modifying the time
scale by a factor of 2 to take
account of the advantage in gain-
bandwidth factor. The imped-
ance of the n = 3 approximation?
to the four-terminal network of
maximum gain-bandwidth prod-
uct, which has itself a gain-band-
width factor of 4.84, is of the form
1/(p + V1 + p%3% Theimpulse
response has the equation 3J,(2)/¢,

is 2.2. from which Fig. 2-14 is obtained.

The fractional overshoots shown in Figs. 2:13 and 2-14 are surprisingly
small when one considers the sharpness of cutoff of the pass bands causing
them; the overshoot oscillations decay extremely slowly, however.
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FiG. 2-14.—Response to step-function current of the n = 3 approximation to the four-
terminal flat-gain network of maximum gain-bandwidth product. The overshoot is
15.2 per cent, and the gain/rise time advantage over a parallel RC-circuit is 3.75.

From Figs. 2-13 and 2-14 it can be conjectured that the possible
improvement factor in gain/rise time ratio for two-terminal networks with
not more than 9.4 per cent overshoot is about 2.2 and the correspond-
ing figure for four-terminal networks (15.2 per cent overshoot) is about

tH. W. Bode, op. cit., Eq. (17-13) and Fig. 17-4.

2G. A. Campbell and R. M. Foster, ‘“Fourier Integrals for Practical Applications,”

Bell System Tech. Monograph B684, (1931), Formula 576.3.
iH. W. Bode, op. cit., Eq. (17-31) and pp. 440 et seq.

0.2
0
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3.75. These estimates are, for various reasons, subject to considerable
question.

The advantage of four-terminal over two-terminal networks is con-
siderably less in gain/rise time ratio than in gain-bandwidth product.

Future Trends.—It is clear that it is not possible to secure order-of-
magnitude improvements in gain/rise time ratio beyond present practice
by the use of conventional amplifier cir-
cuits. Various other possibilities exist,
however.

One possible method employs vacuum
tubes as negative-capacity elements.
This method is illustrated in Fig. 2-15,
where positive feedback through the small
capacity C yields a negative capacitive T
input impedance for the first tube. Feed- ! —i i
back chains employing circuits like this Fia. 2-15.~Negative-capacity cir-
one may be of value; but because the cult.
negative capacity tends to zero at higher frequencies, the scheme may be
better adapted to achieving moderately fast rise times at a high imped-
ance level than extremely fast rise times at a low impedance level.

The development of secondary-emission and beam-deflection tubes
may yield substantial increases in transconductance.

I
99
=

Fic. 2:16.—" Transmission-line”’ amplifier.

Schemes exist that make it possible, in principle, to achieve arbi-
trarily large gain/rise time ratios, even with present tubes, provided that
the number of tubes is not limited. According to one proposal® the band
to be amplified is partitioned into n subbands, each of which is separately
amplified by a conventional amplifier, the resultant voltages being added
at the output terminals. This method has the defect, resulting from its
additive character, that the gains and relative phases of the various
channels must be kept in accurate adjustment.

1 C. W. Earp, British Patent 448113, accepted June 2, 1936.
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A more ingenious proposal' is symbolically illustrated in Fig. 2-16.
Transmission lines of the same propagation time are connected between
the grids and the plates of a number of amplifier tubes. A voltage ¢,
applied to the first grid, is transmitted along the grid line to the second
grid, and at the same time produces a plate current g.e, that is trans-
mitted along the plate line. Because of the equal propagation rates
along the grid and plate lines, the plate current g.e, of the first tube
arrives at the second plate in time to add to the plate current g,e, caused
by the signal voltage on the second grid. This process continues along
the whole line and has the effect of producing an output current n times
that of one tube, without a corresponding increase in shunt capacity.
Thus the g../C ratio is multiplied by n.

In practice there may arise problems of line termination,? but the
proposal is extremely promising.

In his patent, Percival suggests building the whole apparatus in a
single evacuated envelope, in the form of a long cathode with one trans-
mission line for the grid and another for the plate.

The crux of the matter is that because of the large area of the ele-
ments the tube can have an extremely high transconductance, while the
equal propagation times along the grid and plate transmission lines elim-
inate the disadvantages of the large interelectrode capacitances result-
ing from the use of tube elements that are physically large.

2.3. Flat Top of Pulse.—This section is devoted to pulse distortion of
the type shown in Fig. 2:1b, which illustrates the nonfaithful transmission
of direct current by the amplifier.

Figure 2-2 shows that there are three RC-combinations that hinder the
transmission of direct current. These are the series (R, grid circuit,
the parallel RCy cathode circuit, and the parallel R,C, screen circuit, The
first of these circuits completely prevents transmission of direct current,
and the other two reduce its transmission.

An exact analysis of the behavior of the amplifier shown in Fig. 2:2
would require examination of the interactions of these three circuits, but
because of its complexity this procedure will not be followed, and the
effect of each of the three circuits will be considered as if the others did not
exist.

Grid Circuit—If the plate-load resistor is small compared with the
grid resistor (this assumption is made throughout this section), the series
CoR, circuit may be regarded as a voltage divider across which a step-

! W. 8. Percival, British Patent 460562, accepted Jan. 25, 1937,

*In both the transmission line amplifier and the recently announced traveling
wave tube there is a close integration of the electron stream with the load network;
the vacuum tube and its circuit are, as it were, one.
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function voltage is applied. The voltage division ratio is

PRCy
1+ pR,C,
where p = jw. The step-function response, shown as Curve 1 in Fig.
2:17, is the exponential e=#%¢° whose time constant is R,C,.
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F1g. 2-17.—Step-function response of n capacitance-coupled stages each of time constant

RyCy.

Observe that the tangent at ¢ = 0 intersects the base line at a time
equal to one time constant. Hence for a time that is a small fraction of a
time constant, the fractional sag is equal to the fraction of, the time
constant; that is, the sag is § per cent at 5 per cent of a time constant.

Cascaded Grid Circuits—The step-function response of n cascaded
identical grid eircuits is easily calculated. If the RC-product is normal-
ized to the value 1, the over-all voltage division ratio is

(%)
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Therefore, the step-function response f(t) is the Laplace transform of

1(p y= R S
p\l+7p PraTer

hence f(f) is the (n — 1)st derivative of the Laplace transform of

l .
a+p»
that is!
dn— {r—lg—t
I = onm =0T (6)
A graph of f(?) is shown in Fig. 217 forn =1, - - + , 5.

The important features to observe in Fig. 2-17 and in Eq. (6) are that
(1) the slopes at ¢ = 0 increase directly with n, and (2) there is one addi-
tional crossing of the baseline for each additional capacitance-coupled
stage.

For cascaded grid circuits with nonidentical time constants the graph
of step-function response is very similar, although the mathematical
expression involves only pure exponentials. For example, the step-
function response of three capacitance-coupled stages having RC time
constants 1/a, 1/8, 1/ respectively is

_a¥y — B 4+ BHa — v)e P + 4B — a)e
o = CET DT

The slope of f(t) at t = 0is — (e + 8 + 7). The following general state-
ment is very useful:

RuLe 6. For an amplifier made up of stages having imperfect trans-
mission of direct current, the initial downward slope of the step-function
response is the sum of the initial slopes of the component stages; that is,
the slopes add arithmetically.

Rule 6 means that for amplifiers displaying small fractional sag in
step-function response, the over-all sag can be computed simply by adding
the sags from all individual causes. For example, if a certain amplifier
has a step-function response displaying a sag in 100 usec of 1 per cent for
each of three coupling circuits, 2 per cent for a cathode circuit, and 2 per
cent for a screen circuit, the over-all sag in 100 usec is 7 per cent.

Correlation between Step-function Response and Low-frequency Cutoff.—
Since the 3-db point of a single capacitance-coupled grid ecircuit is
fo = 1/(2xRC), there is a clear connection between the time constant T of
exponential decay and the 3-db low-frequendy point, namely, T’ = 1/{2xf,).

1G, A. Campbell and R. M. Foster, op. cit., Formula 431. The coefficients of e~
in the expansion of f(¢) are called Laguerre polynomials.
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But for more than one stage there is no useful correlation between step-
function response and low-frequency cutoff.

The reason is that the 3-db point increases as the square root of the
number of stages whereas (Rule 6) the step-function slopes increase
linearly with the number of stages. Unless the number of stages in an
amplifier is stated, therefore, it does no good in determining sag to specify,
as in common practice, the over-all low-frequency 3-db point.

Cathode Circuit.—An impedance Z, connected between cathode and
ground of an amplifier stage (see Fig. 2-2) causes
inverse feedback; as is well known, the output t
current of the tube is o

1
Omé€y m . (7) 1/K
For the case in which Z; is a parallel R,C,
combination, the fraction in expression (7) takes

F1G. 2-18.—(a) Plate cur-

the form rent of tube having RC:
cathode circuit when step-
1 + pRiC =P +a y (8) function voltage is applied

1+ ngk + kaCk P + aK to grid.

where p = jw, @« = 1/RiCi, K = 1 + gnR:. The step-function response
corresponding to Eq. (8) is

o =22 1(e—m + e 1)- ©)

A graph of Eq. (9) is shown in Fig. 2-18.
The slope of Eq. (9) at ¢ = 0is —a(K — 1) = —¢gn/Ck. Hence if
there is a 1 per cent sag allowed in a time ¢y, it is necessary that
Ci = 100gnts.
For a type 6AKS5 tube, with g, = 5000 pmhos,

Ci = 2
If ¢, = 500 usec a 250-uf condenser would thus be required. Capacity
values as large as this are usually impractical; in pulse amplifiers required
to display small sag in step-function response it is therefore usual to
leave the cathode resistor unbypassed. In that case the tube plate cur-
rent, when a step-function voltage —e, is applied to the grid, is a step
function of amplitude

1
Gmey 1 + ng_k.

The gain-reduction factor 1/(1 + ¢.Ry) is the price that must be paid for
faithful flat-top reproduction.
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Sometimes, however, the cathode resistor is bypassed by a small
condenser chosen for its effect in reducing rise time (see Sec. 2:4).

Screen Circuit.—An impedance Z. in the screen lead causes a drop in
screen voltage and hence in plate current. The effect may be analyzed
as follows, assuming Z, = 0 and a constant ratio k& between screen and
plate current (k is usually about % or 1) : Let 7, be the actual plate current.
Then %1, is the screen current; this produces a screen voltage drop ki, Z,,
which, in turn, leads to a plate-current reduction %i,Z,g.,., where

_ 90y
gm.a - ‘é’;’

is the screen-to-plate transconductance. Hence

Tp = Gu€q — KipZefm,s
or
R .. B
P 1+ Zkges
But kgm,. = 1/r,, where r, = de,/91, is the dynamic sereen resistance
(= plate resistance of the tube connected as triode with screen strapped
to plate). Hence

, 1
Iy = Gmby A (10)

If Z, is a parallel R,C, combination, the fraction in Eq. {10) may be
written as
_PtBS
P+BE F 1)
where 8 = 1/r,C, and 8 = r,/K, The step-function response has the
equation

10 = g (P4 5) (11)

A graph of Eq. (11) has the same general form as Fig. 2-18.
The slope of Eq. (11) at ¢t = 0is —8 = —1/r(% Hence for a 1 per
cent sag allowed in time {; it is necessary to have

_ 100t
- =

C,

For a type 6AC7 tube, with r, approximately equal to 20,000 ohms,

b

Ce = 505
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If t; = 500 usec, C, = 2.5 uf. Since capacitors having such values are
not too bulky, screen leads are usually bypassed.

Flat-top Compensation.—The plate supply decoupling network R.Cs
(see Fig. 2-2) permits compensation for the flat-top distortion due to
R,C,.

The proper relation among R,, C4, R, C, is given by

thd = R”Cp- (12)
If Eq. (12) is satisfied, then the voltage across R, is given by Eq. (13),

provided the tube of Fig. 2-2 is assumed to be a constant-current generator
and the loading effect of B, upon the plate circuit is neglected:

p(p + a + 8)
(p+a)p+ 8 (13)

where p = jw, « = 1/R,C, = 1/RCy4, and & = 1/RaCa. The step-func-
tion response of Eq. (13) is

er, = gmegl1

ae~tt — femot
f(t) = Ta—) a #* 5, (14&)
or
f&) = e (1 + ét), a =20 (14b)
10
~—_]
£ 3 oal Y
£ \ e \\
= 2 < e
—c:—*ﬁ 06 \\ \b
ox \t—
eSS \ [~
'32 04 \\ T N
[« \{
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t/RyCy

Fia. 2-19.—Flat-top compensation for R,C, with Rq¢C4, Curves (a) and (b) for the case
Ra = Ri. (a) RiCa = ReCq; (b) (RiRa/(Ri + Ra)1Ca = RyCy; (c) Ra = 0.
Equations (14a¢) and (14b) display zero slope at £ = 0, and it is in this
sense that Eq. (12) was said to be the proper criterion for the decoupling
constants. The somewhat more usual relation

Rsz

m Cd = R‘,Cv (15)

leads to the step-function response ¢~%. Figures 2-19a and b compare
ceriteria (12) and (15) for the case in which @ = §,i.e., R; = Ra. Itisseen
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that even for a sag as large as 10 per cent, criterion (12) (Fig. 2-19a)
permits 2.5 times as long a time duration as does criterion (15) (Fig. 2-19b).
For comparison the uncompensated case is shown also, Fig. 2-19c.

If R:>> Ry, the distinction between criteria (12) and (15) tends to disap-
pear, because of the inexactness of commercial resistor and capacitor
values. In principle, however, even for R;/R; as large as 5, a 1 per cent
sag occurs at about seven times greater time duration with criterion (12)
than with criterion (15).

Schemes exist for overcompensating the flat top of a pulse; such pro-
cedures are sometimes useful with pulses of known duration. There are
also methods for compensating the screen circuit by means of the de-
coupling circuit, but these are not discussed here.

2-4. Inverse Feedback.—The main advantages of inverse feedback
for pulse amplifiers are gain stabilization and improved linearity in the
ratio of output to input voltage. Inverse feedback is also employed to
reduce the rise time of unpeaked amplifiers,

Cathode Resistor—The plate current of an amplifier tube with unby-
passed cathode resistor By is

Im€o
Equation (16) shows that the sensitivity to changes in ¢. is divided by
1 4+ gnRyx; hence distortion caused by variation of g with signal amplitude
is similarly reduced, and the amplifier linearity is improved. For the
case where g, R; = 1, the distortion is cut in half.

If Ry is bypassed, there is no reduction in distortion for frequencies
for which the bypassing is effective. Nevertheless, the variability in
quiescent plate current among tubes of the same type is reduced; and
because there is a good correlation between transconductance and quies-
cent plate current for tubes of a given type, the transconductance variabil-
ity is also reduced. 'This is an important argument in favor of self-bias,
in view of the usual 2/1 range in g., permitted by the JAN-1A tube specifi-
cations under fixed-bias conditions.

Cathode Peaking.—As mentioned in Sec. 2-3 it is usually difficult
‘0 bypass the cathode resistor with a condenser large enough to give good
Aat-top reproduction. In that case and provided also that the plate
circuit is constrained to be a simple RC-circuit, it is worth while to choose
a value of cathode bypass condenser according to the following discussion,
in order to increase amplifier speed.

The analysis of this cathode compensation scheme is most simply
carried out by normalizing the plate-circuit constants to consist of a 1-ohm
resistor in parallel with a 1-farad condenser, setting 1 + g.RBx = K and
denoting the ratio of cathode-to-plate time constants by p. The output
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voltage is

Omle 1 1+pp 1
= Om . 1
Tt gnZildp ™K Fppl+p an

If the cathode is left unbypassed, p = 0, and the response of Eq.
(17) to a unit step-function voltage ¢, is

%{'—" (1 — e, (18)

If, on the other hand, the cathode bypass condenser is chosen so that
Cathode time constant = plate time constant, (19)

then p = 1 and the response of Eq. (17) to unit step-function voltage e, is
JO =920 — ™. (20)

Equation (20) displays K times as much speed as Eq. (18) and fully as
much gain.

12
p=2] [ T

1 p=24/3 =
10

09 < 1 B+
08 [ )
LT R 3 out

A

07 o p=0
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Q06

fn pigiing
05 Y // 1 - :‘/ F
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o] 0.4 08 12 16 2.0 a0
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Fia. 2:20.—Step-function response of cathode-peaked pulse-amplifier stage,
K =14 gaRy = 2.
Ratio of cathode-to-plate time constants = p = RBxCx/R:iC.

5.0

It must be pointed out that although the cathode compensation
scheme increases the gain/rise time ratio as compared with the unby-
passed cathode resistor case, it yields no advantage in gain/rise time
ratio as compared with the case in which the cathode is grounded or
bypassed completely. This conclusion follows from Eq. (20), which
shows that the K-fold increase in speed over the grounded-cathode case
comes at the cost of a K-fold decrease in gain.

Cathode compensation can be employed with constants other than
those prescribed by Eq. (19). In Fig. 2-20 is shown a family of step-
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function-response curves calculated for X = 2 and various values of p.
As these curves show, the step-function response is overcompensated for
too large values of p.

It is possible to combine cathode compensation with plate-cireuit
peaking of various sorts, but the details are complicated and are not
given here. The gain/rise time ratio never exceeds that of the grounded-
cathode case.

Screen Reststor.—A resistor between screen and screen voltage supply
stabilizes the quiescent screen current and hence the plate current. The
effect is very much like that of a cathode resistor and for the same reason
reduces the transconductance variability among tubes of the sanie type.

The number of ohms in a screen resistor that produces the same
degenerative effect as a 1-ohm cathode resistor can be determined by an

é é Feedback g

resistor

AN

1

1L
]

Fic. 2-21.—Feedback from plate to preceding plate.

argument like that used in Sec. 2-3 under “Screen Circuit.” It turns
out that a screen resistor of

JmTs (21)

ohms is equivalent to a 1-ohm cathode resistor, where, as before, r, is the
dynamic screen resistance.

A typical value of Expression (21) for a type 6AC7 tube with
gm = 10,000 wmhos and r, = 20,000 ohms is 200; hence a 60,000-ohm
screen resistor has the current-stabilizing effect of a 300-ohm cathode
resistor.

Grid-plate Resistive Feedback.—Local feedback can be applied from the
plate of an amplifier stage back to its own grid as shown in Fig. 2-21.
This circuit can be extended from stage to stage, in which case it is
customarily called a “feedback chain.” This subject is treated at
length in Chap. 6. In particular, as shown in Sec. 6-6, it is possible by
such means to attain. with an amplifier employing simple interstage
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networks (except for the first and last) the gain and bandwidth per-
formance that would otherwise require complicated interstage networks.

Over-all Negative Feedback.—Moderate amounts of over-all negative
feedback can be employed without much difficulty in two- or three-stage
pulse amplifiers that use two-terminal coupling networks. For proper
design of the loop gain characteristic the reader is referred to the exhaus-
tive treatise of H. W. Bode.!

Figure 2-22 illustrates a simple application of negative feedback to a
two-stage amplifier and cathode follower. Amplifiers of this sort can
easily be built with inverse-feedback loop gains of 100, thereby reducing
the sensitivity to ¢g. variations by a factor of 100. In particular, varia-
tion of gain with respect to heater voltage is made negligible.

B+

V
AA
\4
AA
VWA~

il
&V

At
d

F ] =/ 7 out_

AA
WA
AA,
Vv

‘:
<
5

Fia. 2-22.—S8imple illustration of over-all feedback.

2:6. Gain Control of Pulse Amplifiers. A#tenuators.—Potentiometer-
type step attenuators of the capacitance-compensated type, as shown in
Fig. 2-23, may be used at the input terminals of a pulse amplifier or
between stages. For pure attepuation with no waveform distortion, all
the RC-products must be the same. If the impedance level at the
attenuator can be kept low enough, say 100 chims, so that the maximum
RC-product (maximum resistance times stray capacity) is negligibly
small compared with the rise time of the waveforms used, the addition
of the compensating capacitances is unnecessary and a simple poten-
tiometer can be used.

For intermediate cases where an extremely low impedance poten-
tiometer is not permissible, a partially compensated potentiometer

1H. W. Bode, Network Analysis and Feedback Amplifier Design, Van Nostrand,
New York, 1945,
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scheme can sometimes be used. This involves adding from input
terminal to arm a condenser having a value equal to the capacity existing

Input

Output

%a =

R\C,=R,C,=R,C;=R,C,=R,Cs=R,C,
Fia. 2-23.—Compensated step attenuator.
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Fig. 2-24.—Step-function response for partially compensated potentiometer.

from arm to ground. The distortion of step-function response for
different potentiometer adjustments is shown in Fig. 2-24. For voltage
divisions up to 3 (k > 0.33), adding the extra condenser is an improve-
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ment; but for higher attenuation (k < 0.33), it is better to omit the
condenser.

For use at line impedance levels (50 to 100 ohms), any of the standard
types of ladder, T, or bridged-T attenuators may be used if the resistors
are sufficiently noninductive (composition resistors, for example) and
stray capacitances are kept down to a minimum.

A very interesting type of constant-impedance attenuator has been
reported by H. E. Kallmann.! Use of ‘Kelvin line” permits a linear
relation between decibels and shaft

rotation, and the attenuation can be B+
made independent of frequency up to
about 70 Mc/sec or more. R4
Conirol of Tube Characteristics.— Ry
Since the gain of a pulse-amplifier stage =
[]

is a direct function of g, variation of
g by changing d-c voltages on the tube
elements is a possible way of controlling G fopre
gain. This method is practical in stages —] T2
where the signal amplitude is small com-
pared with the grid base. By simul-
taneously applying the control voltage Ry, SR,
to several successive stages, an appre-
ciable range of control may be achieved.
The variable voltage may be applied to Gain
the control grid (through R,), the screen Controf
grid (through R,), or the suppressor
grid. In the third case it is desirable =
: F1a. 2-25.—Variation of gain by feed-

23,12‘531,2112‘11}’:5 ek yigog \ SapPrestOr " huck eathods degenration).

This type of control is better suited to adjusting the output amplitude
with a fairly constant input signal than it is for correcting for large input
level variations where there is danger of overloading the first stage.

Variable Negative Feedback.—One s mple method of gain control is
shown in Fig. 2:25." A variable cathode resistor is so arranged that it
varies the feedback but not the tube bias. Gain variations up to 5/1
can usually be accomplished in this way without difficulty. The limit
depends on the speed of the stage, since, for higher speeds, the maximum
size of the variable resistor must be held down. This method is good for
variable input levels because the input voltage overload level increases
as gain is reduced.

For other types of feedback amplifiers, the gain can also be changed

1H. E. Kallmann, ‘Portable Equipment. for Observing Transient Response of
Television Apparatus,” Proc. I.R.E., 28, 351-359 (1940).
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by changing the feedback ratio. This may not be easy if the amount of
feedback is large but can usually be accomplished with a compensated
attenuator in the feedback path.

2-6. D-c Restoration.—This widely accepted but misleading designa-
tion refers to a process of clamping either the most positive excursion
or the most negative excursion of a signal to a specified voltage level.
For a constant-amplitude periodic signal it is desired to acecomplish this
without significant waveform distortion.

D-c restoration is most often used where the signals are ‘single-

sided,” as they are in television and
Vo!t:ge c Voit:tge radar pulse systems. When such
{ g ° asymmetrical signals have been passed
through capacitive couplings, their
d-c component is lost, and for this

R,g

<

particular type of signal the use of
the term ‘‘d-¢ restorer’ is fairly well
justified.

A typical d-c restorer circuit for
positive-goin signals is shown in Fig.

To ground or 2-26. For negative-going signals the
teference ;l?ltage fevel diode is reversed. Good d-c¢ restora-
(£r) tion requires signal amplitudes at least

Fic. 2-26.—Typical d-c restorer circuit

(shown for positive-going signals). as large as 1 volt, since diode conduct-

_ance is small for small signals.

A danger with the d-c restorer shown in Fig. 2-26 for positive-going
signals is that diode heater-to-cathode hum current develops a hum
voltage across K,. For type 6AL5 diodes with R, = 1 megohm, and
6.3 volts alternating current applied to the diode heaters, with one side
of the heaters grounded, the hum voltage in 12 out of 98 tubes tested was
in excess of 0.25 volts, and 1 tube produced 1.4 volts of hum. This hum
voltage may be very disturbing. It may be avoided or reduced by use
of one of the following: (1) A nonthermionic diode, such as a germanium
crystal (but the back resistance of such crystals is small, tending to
increase the sag in pulse response), (2) direct current on the diode
heaters, (3) a separate heater winding for the diode heaters, suitably
biased, or (4) smaller values of B, (this also tends to increase sag). The
heater-hum difficulty does not arise in the case of a d-¢ restorer for
negative-going signals.

The action of the circuit of Fig. 226 upon signals is shown in Fig
2-27. Although not visible in this illustration, waveform distortion
oceurs whenever the amplitude of the envelope of the waveform increases,
i.e., while the coupling condenser is being charged to its new value.
When the amplitude of the envelope decreases, there is a delay in restoring
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the level of the baseline until the condenser has had time to discharge to
the new value.

This discussion is based on the assumptions of (1) voltage generator
impedance low compared with R,, (2) an ideal diode, and (3) a zero

©

Fra. 2:27.—Effect of d-¢ restorer (time scale long compared with time constants
involved). (a) Original signal, d-c component shown dotted; (b) signal after d-¢c component
has been removed; (¢) signal at output terminals of d-c restorer.

Input
signal

Sag caused by
inadequate R, C;
time constant

Qutput signal

with restorer Undershoot caused by
restoring charge in Cy
through diode resistance
Fia. 2-28.—Clipping caused by d-c restorer (with rectangular input pulse having a time

duration of the same order of magnitude as E,Cp).
impedance supply for Er. Ordinarily, the parameters are such that
these approximations are justifiable. Also, it is assumed that the time
constant R,C, is large compared with the duration of individual pulses
within the signal envelope but short enough to follow envelope varia-
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tions. Here caution must be exercised, for these last assumptions are
frequently not true. Figure 2-28 shows the result when a rectangular
pulse having a duration of the same order as E,C, is passed through the
circuit. In this case the flat top of the signal has been distorted because
of the inadequate grid time constant R,C,, and the undershoot at the
end of the signal has been radically altered in form by the action of the
diode. The residual undershoot shown is due to the finite resistance
of the actual diode; the ratio of undershoot to sag is approximately
Raioo/ (Faiote + Rovusce).

For negative-going signals it is possible to use the grid of a zero-bias
amplifier as its own d-c restorer, but the results are often not so good
as the use of a separate diode for the purpose, because the grld—cathode
conductance may not be large.

Where a d-¢ restorer is used, it must be remembered that the R,C,
coupling circuit can no longer be exactly compensated by the decoupling
network (see Sec. 2-3), since a nonlinear network with a nonlinear ele-
ment cannot be exactly compensated by a linear network. Therefore,
where a d-¢ restorer is required, the R,C, coupling circuit should be
adequate to preserve flat top by itself.

2-7. Limiting Amplifiers.—For a good many purposes, particularly to
avoid driving an intensity-modulated cathode-ray tube into the ‘“bloom-
ing”’ region, it is necessary to place an absolute limit on the magnitude
of the output signal. This limit can be specified either with respect to
(1) the a-c axis of the input signal or (2) the peak-to-peak excursion.

Both cases are customarily treated by adjusting the bias of a nega-
tive-going pulse-amplifier stage so that it is driven beyond plate-current
cutoff for signals larger than the specified value. Thus a definite limit is
established.

A common way to set the limit is to increase the screen dropping
resistor R, until the desired limit is obtained, leaving R, at its normal
value. This reduces the quiescent-plate-current variability among tubes
and hence the limit-level variability, as discussed in Sec. 2-4.

If R, is bypassed, there is variation, however, of limit level with duty
ratio, i.e., with the average value of plate current. The reason is that
average plate current determines average screen current; this, in turn,
in the presence of a bypassed screen resistor, determines quiescent screen
voltage and hence limit level. The only way to combine limit-level
stabilization with regard to both duty-ratio and tube variability is to
leave R, unbypassed.

Unfortunately, leaving R. unbypassed is not practical; it not only
greatly reduces gain but also increases the input capacity of the tube
by the amount GC,,, where G is the voltage gain from grid to screen and
C,. is the grid-to-screen capacity; this is an example of a somewhat
unconventional Miller effect. The conclusion is that an engineering
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compromise has to be made between limit-level stabilization with
regard to duty ratio and limit-level stabilization with regard to tube
variability.

If limiting of the peak-to-peak type is desired, d-c restoration should
be used at the grid of the limiter stage. This method may be economi-
cally used by making R; = 0, so that the grid performs its own restoring
action to prevent excursjons in a positive direction from ground level.
(R, is then the sole current-stabilizing element.) It may be better to
use a separate diode as the restorer, with its plate tied to the amplifier grid
and its cathode tied to the desired potential. Certain precautions
regarding the use of d-c restorers are noted in Sec. 2:6.

The output voltage from such a limiter has its positive excursion
limited if the output signal is taken from the plate. Therefore, if it is
desired to limit the negative excursion instead, the limiting stage should
be followed by another that inverts the polarity.

2.8. The Mixing of Multiple Input Signals. Resistance Networks.—

Almost any of the types of resist- z 7

ance mixers used in the communi- Eje— AN AN Eoy
cation field can be employed for z

pulses if noninductive resistors Ezo———AAA—

are used, capacities are kept down, z

Tube Mizing.—Because a pen-

z
tode is essentially a constant-cur- Eyq——AAA—4 =

rent generator, one may parallel H A A Amplifier must be of
the plates of two or more pentode o Vv the inverting type
amplifiers, using a common load e AVAVAV
impedance. The effect of in-
creased output capacity on the
speed of the plate circuit must be taken into account, and allowance must
be made for the effect of the increased direct current in the load and

decoupling resistors.

and the impedance level is reason- Es VYV @"
ably low. E, Z Iﬁ-

.

Fia. 2:29.—Feedback-amplifier mixer.

7 e ¢ This system has the distinct
o——AAN ? advantage that it is unilateral.
1

9 Z
AYAYAY !
For cases where a maximum of
z Ity R isolation is desired among the in-

n—1 put signals to be mixed, it is an
o excellent method. The linearity
Fi1g. 2:30.—Nodal an_alysis of feedback-type of mixing is not very good,
mixer. however.
Under particular conditions tube mixing may be accomplished by
using more than one grid as a signal-injecting element. For example, the
suppressor of the type 6AS6 may be used in this way.
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Mizing Network with Feedback Amplifier.—Figure 2-29 shows a type
of mixer whose output voltage is accurately additive. In addition,
coupling among input channels is very low if the amplifier gain is high.

The behavior of this mixer circuit may be understood from the nodal
analysis of Fig. 230, drawn for a single input channel. Setting ¥ =
1/Z, G = 1/R,, the determinant A is obtained:

Y -Y 0
A={-Y (n+1)Y -Y
0 gm — Y Y+ @

Hence
E An -+ 1YY 4+6) 4+ Ygn —Y)
1 1

== "+ DY +6) - T 7

14 DA 46 gm)(_ Y+ ) (n+1)(1+(—);—>
VY — =77
1

T T F U

1 + ngl

for Y €@, g G

If* g.B: 3> n + 1, the output voltage is accurately equal to the nega-
tive of the input voltage, regardless of variations in g,.. By the principle
of superposition the mixer as a whole is accurately additive in its input
voltages, except for a sign reversal, i.e.,

ey = —(By+Es+ - - + B,

Figure 2-31 shows a three-channel feedback mixer. The condenser C
is included to block direct current. Because of the inverse-feedback
action, the resistors B can be made much larger than usual for a given
speed of response.

Nonadditive Mizing.—In some applications, particularly where the
pulse output voltage is used to modulate the intensity of a cathode-ray
tube, it may be desirable to arrange matters so that if two or more input
signals occur at the same time, the output voltage will be that due to the
largest signal only; this process is called nonadditive mixing. For
example, if a cross-hatched pattern is to be presented on an intensity-
modulated eathode-ray tube, it is desirable to suppress the extra bril-
liance at the intersections of the lines that would occur if the two signals
were added.

! For a multistage amplifier g.R; should be replaced by the gain & of the amplifier
with the feedback loop open.
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This can be done for any number of input channels of positive polarity

signals by putting the signals
through separate cathode followers
operating with a common cathode-
load impedance Ry and biased in
their quiescent conditions approxi-
mately to plate-current cutoff
(Fig. 2:32). I Rj can be made
large enough so that the gain is
nearly unity, then a signal of 10
volts in one input channel intro-
duces approximately 10 volts addi-
tional bias on the other cathode
followers. Thus a signal of less
than about 10 volts in any of the
other input channels cannot over-
come the grid bias and hence does
not appear in the output voltage.
Therefore the largest input signal
at any instant effectively masks
all smaller ones.

B+

Fia. 2-31.—Typical three-channel feedback-
amplifier mixer.

For cases where the value of R, is such that the gain is substantially
less than unity the biasing-off action is not complete, and some addition
occurs for signals that are smaller than the largest one.

B+

i

Output

voltage

Input voltages

o~ @
=
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voltage
Fic. 2-32.—Nonadditive mixer for positive-polarity signals. Any number of input channels
can be used, with one tube for each input channel. -
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When the initial quiescent bias is insufficient for plate-current cutoff,
there are two significant effects: (1) The gain is less for small signals than
for larger ones (a nonlinearity is introduced in the gain characteristic),
and (2) the gain is reduced, again resulting in some addition of signals.
Effects (1) and (2) are both due to the loading of the output circuit by the
additional cathode impedances when the tubes are not operated at initial
cutoff. Usually some additive effect can be tolerated, so that complete
initial cutoff is not required.

B+

>
SR,

Out
C, - K__{:}— C,
o——f——p—k o - I

- —= xl
Input channel d Input channei
No.l pg | FC, | L s No. 2
33 11 :[ 3R, ;: R,
<L‘ Rk =
S
Balance adj, = =
Gating Gating
waveform “A” waveform “B"

upr
T 1 LT T T LT T 1T UeGround tevet
g
:] l:l I Iy D D [:l ] Ground level

Fia. 2-33.-—Electronic input-channel switching. Input signal No. 1 is passed through
when waveform ‘“A’’ is below ground and waveform “B" is at ground.

In principle the same action can be obtained with diodes instead of
cathode followers if the input signals come from sufficiently low impedance
sources and the common load impedance of the diodes is large compared
with the forward impedance of any one of the diodes. By poling the
diodes properly, either polarity of input signal may be used, provided
that all input signals have the same polarity. The diode method is not
likely to be practical in most cases.

For either of these methods the d-c level of the input signals must be
held constant; this ordinarily requires d-c¢ restoration if the signals have
appreciable duty ratio.

2.9. Electronic Switching of Pulse Amplifiers.—The need often arises
to switch the input signal to a pulse amplifier so that it will be applied
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only at a desired time. It is seldom permissible merely to turn off the
plate or screen voltage or cut off the suppressor of an amplifier stage,
since this action causes a severe switching transient, which is passed on
to the rest of the amplifier.

The switching transient can be eliminated or at least reduced to a
very short duration by the method shown in Fig. 2:33. The additional
pentode is used to compensate for the change of current with switching
in the amplifier pentode. An adjustment is provided for balancing the
currents.

If it is desired to switch the amplifier input terminals from one input
channel to another, the second input signal may be applied to the grid
of the second pentode.

The device for generating the gating waveform (rectangular wave-
form) may be a multivibrator or trigger circuit as the switching require-
ments demand. For periodic switching controlled by a sine-wave
generator (such as the power-line current), a “squaring’ amplifier can
be used. The essential requirement is that the d-c level of the top of
the gating waveforms be fixed. If necessary, d-¢ restorers can be used
at the grids of the cathode followers, but often direct coupling can be
arranged.

2:10. Output Stages. High-impedance Load—Many of the applica-
tions for pulse amplifiers concern a load that is essentially a high resistance
shunted by a small capacity, such as the input impedance of a cathode-
ray tube. For a tube used as a voltage output stage of a pulse amplifier
of this sort, a logical figure of merit is the ratio of maximum output
voltage to rise time with resistance-capacitance load. (This figure of
merit disregards the important question of gain.)

For signals that are either symmetrical or of negative polarity at the
grid of the tube the maximum output voltage is Fp.. = I,R;, where I,
is the quiescent plate current of the tube and R; is the load resistor. If
the total output circuit shunt capacity, including that of the load, is C
and if = denotes the 10 to 90 per cent rise time, then

Eue 1,
r 220
[compare Eq. (22) with Eq. (3)].

For signals of positive polarity at the grid of the tube, the same
formula holds if I, is redefined as the incremental plate current from the
quiescent point to some allowable maximum. It is difficult to evaluate
the figure of merit for the general case, since the allowable value of I, is
sometimes determined by plate dissipation, sometimes by emission, and
sometimes by the requirement of avoiding grid current.

The following table has been compiled by considering the case of

volts/sec (22)




104 HIGH-FIDELITY PULSE AMPLIFIERS [Sec. 2-10

symmetrical signals, making reasonable assumptions about the limiting
factors on I, and assuming 20-ppf capacity beyond the amplifier tube
itself.

TaBLE 2-5.—Ratio oFr MaxiMum Ourrur Vorrace 1o Risg TiMe ror Various
Tuee Tyres

Tube type I,, ma c E max/7 (volts/psec)
6AKS5 10 23 200

6ACY7 15 25 270
2-6AK5's 20 26 350
(in parallel)

8AGT7 30 27.5 500
6V6GT/G 45 27.5 750

6L6G 75 30 1130

The listings in Table 2-5 are sensitive to the assumed external capacity.

The proposal is sometimes made that the figure of merit [Eq. (22)] of
an output stage can be increased by using cathode-peaking (Sec. 2-4).
Consider a type 6AKS5 tube, for example, with g, = 5000 uymhos and
R; = 200 ohms, so that 1 4 g.R: = 2. Buppose the plate-load resistor
is 2000 ohms, and suppose the cathode bypass condenser is chosen so that
the cathode and plate time constants are equal. Then, as follows from
"Eq. (20), the response to a step-function grid voltage is as fast as normally
results from the parallel combination of a 1000-ohm load resistor and the
output capacity.

However, it is argued, the maximum output voltage is what is
achieved from a 2000-ohm load resistor, i.e., 20 volts for a maximum
change in plate current of 10 ma. Hence the ratio En./r is thought to
be twice what it is in the grounded-cathode case. The fallacy in this
argument is that the inverse feedback is able to double the speed of
output-circuit response only when there is enough plate current available
to drive the output circuit with a sharply peaked current waveform,
having an initial current twice its steady-state value. If this doubled
plate current is not available, the inverse-feedback action fails. Hence
the improvement in speed pertains to small signals only and not to
limiting signals.

What happens in the.cathode-peaked amplifier stage above is that the
maximum output signal is equal to 20 volts, corresponding to the com-
bination of 10 ma and 2000 ohms, but the speed of response of a limiting
signal is no greater than that of a grounded-cathode stage having the same
plate circuit.

Push-pull Amplifiers.~—When driving the deflection plates ~f a
cathode-ray tube, considerable output voltage is required, and Tt is better
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Push-pull
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output
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S
FrG. 2:34.—Typical push-pull pulse-amplifier stage.
Push-pull
output

B+

Ry Rg

To load To load

NN
Ry R Cs G
R, R
1 2

R= 80 ohms tfor 6AC7's) =
()]

(a) Single-tube phase inverter; (b) balanced-output imped-
ance phase inverter.

Fic. 2-35.—Phase inverter.
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from the standpoint of focus to apply the signals in push-pull. A push-
pull output stage for such purposes is usually constructed like two
identical single-ended stages, each driving a single deflection plate.
The only difference is that the two cathodes are tied together and go
through a common bias resistor. Because there is in principle zero
signal current flowing through the cathode resistor, leaving the cathode
resistor unbypassed entails no loss in gain, in contrast with the single-
sided amplifier case. Such a stage is shown in Fig. 2-34.

Phase Inverters.—The transition between a single-sided stage and a
push-pull stage is accomplished by means of a phase-inverter stage. It is
usually impossible to employ a center-tapped pulse transformer because
of its inadequate flat-top performance.

The circuit diagrams of two types of phase-inverter stages are shown
in Fig. 2-35. The type shown in Fig. 2:35a is best used at fairly low
level, where R can be kept small without requiring excessive plate cur-
rent. At frequencies above about 10 Mc/sec a pentode should be
employed in the circuit of Fig. 2-35a to avoid the signal trapsmission
path through the grid-plate capacitance. When a pentode is employed,
the plate resistor should be larger than the cathode resistor in the ratio
of the cathode current to the plate current.

For operation at still higher frequencies it is wise to proportion the
voltage divider consisting of the grid-cathode capacitance and the
cathode-ground capacitance so that its loss is equal to the loss through
the tube from grid to cathode, i.e., so that

Cu - gnl ,
Cak + Clm 1 + ng

where C,; is the grid-cathode capacitance and Cy, is the cathode-ground
capacitance. This requirement usually necessitates adding grid-cathode
capacitance.

The phase inverter shown in Fig. 2:35b has low gain but has the
advantage of equal and low output impedances. Moreover, both heater-
cathode and plate-supply hum are canceled in this arrangement, whereas
neither type of hum is canceled in the circuit of Fig. 2-35a.

The action of the circuit of Fig. 2-35b may be explained by denoting
by 1, the signal current in the cathode follower, by 7, the branch current
(from the left-hand push-pull tube) that flows in the resistor £ between
push-pull cathode and ground, and by %, the corresponding branch cur-
rent from the right-hand push-pull tube. Then, if the push-pull tubes
are assumed to have equal transconductance g..,

il = ngiay
7:2 = _ng('Ln + 7:1 + 'LZ)
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Hence
’1:2 = —1,1(1 + ng) - g,,,Riz,
il + gaR) = —1.1(1 + gaR);
consequently
’1:2 = —7:1.

Low-impedance Load.—A pulse amplifier is often required to drive a
low-impedance line of character-
istic impedance between 50 and
100 ohms. If such a line is termi-
nated in its characteristic imped- Cy Triode, or pentode
ance, it can be treated as if it were fr"_| connected as triode
a load resistor. But the necessity
frequently arises for isolating the
d-c level of the amplifier plate
from the line, and in order to pre-
serve good reproduction of pulse R=2z,
flat top an extremely large block-  Ground or bias
ing condenser would then be re- potential =
quired. The customary way of F1a. 2:36.—TUse (_)f cathode fpllower to drive

< 1. . L low-impedance line.
avoiding these difficulties is to use
a cathode follower between the last amplifier stage and the line, as shown
in Fig. 2-36.

Cathode Follower.—The cathode follower is a form of voltage feedback
amplifier having a voltage gain less than unity. For a load impedance
R, the gain is

B+

Ry Ik
Transmission line

g= -t (23)
1+g.RET-
u
Since ¢ 3> 1 for pentodes and most triodes, Eq. (23) can be written
~ _g=R
§=7 + gnR (23a)
The output resistance is
R
_—y (24)
u
or approximately
R

The input capacitance of a triode cathode follawer is

Cin = CIIP + @1 - g)Cak; (25)
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where G is the gain of the cathode follower, C,, is the direct grid-plate
capacity, and C, is the direct grid-cathode capacity. For a pentode
cathode follower with screen bypassed to cathode,

Cin = (1 — §)(Cou + Co), (26)

where C,, is the direct grid-screen capacity.

As an example consider a type-6 AC7 pentode cathode follower with a
g of 9000 umhos and a 1000-ohm cathode load resistor. Then from
Egs. (23a), (240), and (26) it follows that
the gain G is %, the output impedance is
100 ohms, and the tube input capacity is
about 1.3 uuf. To this 1.3 puf must be
added the usual wiring and socket capacity
e of about 4 uuf; the total input capacity at

zero frequency is thus reduced to about a
third the usual 6AC7 value. It must be
out remembered, however, that for a cathode
follower with RC load the input capacity
increases somewhat with frequency because
of the lower gain of the cathode follower

Fie. 2:37—Circuit for analy- b the higher frequencies; unfortunately,
sis of effect of capacity in shunt it is precisely at the higher frequencies that
with load of cathode follower. . . . S

reduction in capacity is important.

The low output resistance of a cathode follower is its most valuable
feature. If a condenser Cy is connected across the resistor R, (see Fig.
2:37), then the rise time is determined by the combination of C; and the
output impedance of the cathode follower; this rise time is only 1 — G as
long as the rise time of the R.C; combination; i.e., ’

_ 22RC:
1 + nglc

For a given external capacity C, considerably greater speed can therefore
be obtained.

Equation (27) was derived on the assumption of a constant value of
gm; that is for small signals. However, it holds for positive-going step
functions even of extremely large amplitude, since in the positive direction
the gn, of a tube does not decrease until the grid is driven far into the
positive region.

In the case of negative-going signals, Eq. (27) holds only for small
signals. A large negative step-function grid voltage moves the grid
voltage instantaneously; because the cathode voltage cannot follow
instantaneously, the instantaneous grid bias is then large. (It must be
remembered that the trailing edge of a positive pulse is a negative-going

B+

Ry C

T

@7
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step, to which the above remarks apply.) The tube is cut off if the
amplitude of the step is larger than the difference between the quiescent
grid-cathode bias and the bias value for cutoff. The condenser C; then
discharges through E only, until the cathode potential falls to the point
where the tube again conducts.

The conclusions for pulses of amplitude about equal to the grid base
of the tube are that (1) the cathode follower is an unsymmetrical device
that is faster on the rising edge of the pulse than on the falling edge, (2)
the fall time is a function of amplitude and may be as large as that of the
external circuit. The fall time can be reduced by increasing the quiescent
voltage drop across Ry, which ordinarily means increasing the quiescent
plate current of the tube.

2:11. Examples. Pulse Amplifier for Deflection-modulated Cathode-ray
Tube.—The amplifier whose circuit diagram is shown in Fig. 2-38 was
designed for use with the Radiation Laboratory Model P-5 Synchro-
scope! and is intended to drive the deflection plates of a type 5JP1
cathode-ray tube.

The over-all rise time of the amplifier is ¢ usec, with about 1 per cent
overshoot over-all, and the sag in a 200-usec rectangular pulse is about
1 per cent. The gain is 200, and the deflection sensitivity at the amplifier
input terminals is about 4 volt/inch. The maximum peak-to-peak out-
put voltage is about 220 volts, or 3% inches.

The amplifier is operated in Class A, so that it accepts signals of
either polarity and its gain is independent of duty ratio.

The input step attenuator is of the compensated type discussed in
Sec. 2-5, the semiadjustable condensers being set to make the RC products
equal. The voltage ratio per step is about 3/1.

Fidelity of flat-top reproduction is achieved by leaving the cathode
resistors unbypassed and employing large screen bypass condensers and
large R,C, time constants. The coupling condenser between the type
6ACT phase-inverter tube and the left 6AG7 tube is only 0.001 uf, but
flat-top compensation is used in that stage (see Sec. 2-3). The com-
pensating network is placed in the grid lead rather than the plate-supply
lead; this reversal permits a very small value of § [see Eq. (14)] and is a
good idea where the plate-load resistor is small, as is the case in very high-
speed amplifiers.

The peaking circuits are of the four-terminal linear-phase type (Fig.
1-26) whose step-function response is shown in Fig. 1-28.

The phase inverter has the form of Fig. 2:35a. For the reasons given
in See. 210 it is operated as a pentode. Hence the plate-load resistor
(390 ohms, = 4300 in parallel with 430) is 20 per cent larger than the

1 Vol. 22, Chap. 7, of the Radiation Laboratory Series.
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cathode-load resistor (320 ohms), because the cathode current is about
20 per cent larger than the plate current.
Only the plate circuit of the phase inverter is peaked the low output
impedance of the cathode circuit is adequately fast without peaking.
Pulse Amplifier for Intensity-modulated Cathode-ray Tube—The
amplifier whose circuit diagram is shown in Fig. 2-39 was designed to
drive the cathode of an intensity-modulated cathode-ray tube.

.4L 10k 2w
_E—'\ . AAN —— = +150V
1k
29uh +300v
=35 v video
154h To cathode
+1lv of CRT
video
in
220k
<
(i 100
g

C

Marker in
+1lv

100
Marker Gain

Fi1G. 2-39.—Pulse amplifier for intensity-modulated cathode-ray tube.

The over-all rise time of the amplifier is about 2% wsec, with about
5 per cent overshoot over-all, and the sag in a 1000-usec rectangular pulse
is about 2 per cent. The gain is about 20, with very conservative ratings
of tube transconductances. The output voltage is about 35 volts.

The amplifier is intended for one-sided signals of positive polarity
at the amplifier input terminals, and d-c restorers are used at the input
terminals of the last amplifier tube and at the cathode of the cathode-ray
tube.

Positive signal pulses, limited to an amplitude of 1 volt, are brought
to the amplifier terminals on a 100-chm coaxial line, whose terminating
resistor is located on the amplifier chassis.
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Tube-mixing (Sec. 2-8) of the signal and market pulses is accom-
plished in the 6J6_plate circuit. The gain of the mixer stage is about
unity.

Gain is adjusted by varying the amount of degeneration in the cathode
lead (Sec. 2-5) of the first type 6AKS5 tube.

The peaking of the 6J6 mixer stage must take into account the shunt-
ing effect of the triode plate resistance. A larger value of peaking
inductance is therefore required for the same increase in speed. The
second stage employs simple shunt-peaking, with m = 0.41 (Sec. 2-2).
In the last stage, where it is necessary to achieve large output voltage as
well as high speed, a four-terminal network is employed ; this is a variant
of the network of Fig. 1-26.

A 47-ohm, 0.01-pf decoupling network will be observed in the plate-
supply lead of the second stage. Its purpose is to decouple the amplifier
from the particular power supply in actual use and has no general
significance.



CHAPTER 3
PULSE AMPLIFIERS OF LARGE DYNAMIC RANGE

By Harry J. LipxIN

3-1. Introduction.—Certain special applications require high-gain
video, or pulse, amplifiers that must handle a large dynamic range of
incoming signals, with voltage ratios between largest and smallest signals
of 10® or more. One such application is the ‘“‘erystal-video receiver,’”’?
in which an r-f pulse signal from the antenna is immediately detected
and the resulting video signal amplified. The type of amplifier required
for this purpose is quite different from the high-fidelity pulse amplifiers
discussed in Chap. 2, as is made clear by the fact that not one of the
amplifiers discussed in this chapter employs high~frequency peaking. The
purpose of this chapter is to present the special features and design con-
siderations of pulse amplifiers in which the emphasis is on high gain and,
above all, very large dynamic range.

Gain.—To obtain maximum sensitivity, the amplifier should have
sufficient gain to bring pulses up from the amplifier noise level to an
amplitude suitable for viewing on an indicator or for triggering an
auxiliary circuit. ‘The rms open-circuit thermal-agitation noise level
e = v/4kTRB is approximately 7 uv for an amplifier source resistance
R = 3000 ohms and bandwidth B = 1 Me¢/sec; if the amplifier noise
figure is 3 db, the equivalent input noise level is 10 uv. To obtain a noise
level output of 3 volts, a gain of 110 db is required. For other band-
widths, noise figures, output levels, and source resistances the required
gain varies somewhat, but the order of magnitude remains the same.

Dynamic Range.—Signals appearing at the input terminals of the
amplifier may have amplitudes as small as that of the noise, that is,
several microvolts, or as large as several volts. If no special care is taken
to handle the large signals, they will either drive successive stages of the
amplifier to cutoff or cause heavy grid current to flow, causing the ampli-
fier to block for a considerable period after each strong pulse and thereby
rendering it completely useless for the amplification of weak signals
during that time. Some applications require that the period of insensi-
tivity following strong signals be reduced below an acceptable minimum;
others require further that the width of strong pulses be preserved
despite limiting. In either case the problem of overload is the central

1 8ee Vol. 23 of the Radiation Laboratory Series.
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one in this type of amplifier and requires an entirely different approach
from that of Chap. 2.

Microphonics.—A problem peculiar to high-gain pulse amplifiers
is that of microphonics. Mechanical shock or vibration of the first
amplifier tube causes fluctuations in the plate current which appear as
low-frequency signalsat the output of the amplifier. If the low-frequency
response of the amplifier is good encugh by conventional standards to
pass the pulse satisfactorily, experience shows that microphonic signals
are considerably stronger than saturation level, in spite of all mechanical
precautions that may have been taken, such as shock mounting. Elimi-
nation of microphonic signals can therefore be accomplished only by
rejecting low frequencies somewhere in the amplifier. This rejection
results in distortion of the pulse and in low-frequency overshoots which
must be minimized in the amplifier design.

Small Amplifiers—High-gain video amplifiers are often useful for
ultraportable applications in which performance is secondary to light
weight and low power consumption. Design of these amplifiers requires
a different emphasis. Very often the circuits actually used are inefficient
according to normal eriteria such as gain-bandwidth product or number
of stages.

Theoretical Approach.—The classic method of using the amplitude
and phase response of a network in order to determine its transient
behavior is very useful in linear cases; this treatment can be applied to
high-gain video amplifiers, however, only with reservations. In the
consideration of signals below saturation level linear theory is useful to
determine rise time or optimum bandwidth for good signal-to-noise ratio.
However, in regard to large signals and overload effects the amplifier is
primarily nonlinear, and the linear theory is of little use.

Use with Square-law Detector.—High-gain video amplifiers are fre-
quently preceded by a crystal detector to make a crystal video receiver.
Since the detector is a square-law device, quantities such as dynamic
range and signal-to-noise ratio are different if specified at the input
terminals of the crystal from what they are at the input terminals of the
amplifier. For example, a 100-db dynamic range at the amplifier input
terminals corresponds to only a 50-db dynamic range at the crystal input
terminals. A more extended treatment of crystal video receivers is
presented in Vol. 23, Chap. 19, of this series.

3.2. Theory of Overshoots.—In video amplifiers condensers are
widely used for coupling and bypass purposes. If these condensers are
not to cause pulse distortion, they must behave as a perfect short circuit
for any frequency other than zero. This restriction requires that the
voltage across the condenser and therefore its charge remain constant
regardless of the presence of signals, However, all signal voltages tend
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to charge or discharge such condensers, each pulse causing a small change
in the charge of each condenser. After the end of the signal pulse, each
condenser tends to restore itself to its normal charge, thereby producing
transients that appear as spurious signals following the pulse. These
spurious signals are referred to as low-frequency overshoots, since they
arise from the poor low-frequency response of the amplifier, i.e., the
failure of the condensers to have zero impedance at low frequencies.
In the remainder of this chapter, they are referred to simply as over-
shoots and are the only type of such phenomena considered here.

In the type of pulse amplifier to which this chapter is devoted, the
large dynamic range makes the matter of overshoots the main problem.
It is not sufficient for the overshoots to be reduced to 10 per cent or even 1
per cent of the signals producing them, because even 1 per cent of a very
strong signal is still considerably stronger than the very weak signals to
which the amplifier should be sensitive. In order that the overshoot on a
1-volt signal be less in amplitude than a 10-uv signal, the overshoot must
be less than 0.001 per cent. It is for this reason that the problem of how
overshoots are produced and how they can be controlled is given the
extensive analysis that follows.

Generation of Overshoots—Consider the circuit of Fig. 3-1, which
represents a simplified coupling

circuit. In the absence of signal, L S L -
all voltages are zero, there is no it
current flow, and there is no charge R

R, 2

on the condenser.

Let a rectangular pulse of cur-
rent I, be applied at the input ter-
minals. The condenser appears as
a short circuit to the leading edge of the pulse. The voltages across B; and
R are equal and, if shunt capacity is neglected, rise instantaneously to

Rle
R+ Ry 1)

During the flat portion of the pulse, the condenser €' charges as
though through the resistances R, and R, in series. If this flat portion
continued indefinitely, a steady-state condition would finally be reached
where all the current flowed through R;, the voltage across it being
I.R,. The voltage across B: would be zero, and the voltage across C
would therefore be I.R,. The time constant determining the rate at
which this condition is approached is (&) + R:)C. Therefore the
voltage ec across the condenser is

Fia. 3:1,—Coupling circuit.

E=1,

ec = LRl — ¢ ®FRT), (2
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If the pulse length r is short in comparison to the time constant
(Ry + R2)C, the voltage across the condenser at the end of the pulse is
approximately

ec = IR, (3)

r
R, + Ro)C
At the end of the pulse the current ceases suddenly, leaving this voltage
on the condenser. The voltage due to the discharge current divides
between R; and R, which are in series across C, in proportion to the
resistances. Therefore the voltage across R is

e — IchT Rz — IuRle T X
"7 (Ri+ R)C (R + Ry) R+ R: (B + Ry)C

Comparison of Egs. (4) and (1) shows that the ratio of the overshoot to
the signal, called the fractional overshoot, is

(4)

r

ey AT ®
This overshoot decays exponentially to zero with the time constant
(R, + R2)C. R, is usually a plate-load resistor connected between the
plate and the Bt voltage supply, and R; is a grid resistor connected
between grid and ground.

It is standard practice to make R. as large as possible in order to
reduce the fractional overshoot to a minimum without affecting the
other characteristics of the amplifier, which are controlled by the plate-
load resistor. However, this is a dangerous procedure if grid current
flows. To see this, assume as a rough approximation that when the grid
is driven positive, it acts to cause a short circuit between grid and ground
but that when it is driven negative, it acts as an open circuit. During the
pulse, therefore, R. is zero, and Eq. (3) becomes

€c = ICLT (6)

At the end of the pulse, the grid circuit is open, and the resistance across
the terminals of R, regains its original value. Thus the division of the
condenser voltage takes place across the two resistors, making the over-
shoot amplitude
_ IERQT
eRz - C(R1 + Rz), (7)

and the fractional overshoot is

@ = ®)
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Thus the fractional overshoot is what it would be if the grid resistor
were zero. However, the decay time constant of this overshoot is
(R1 + R,)C. Therefore, the conventional design, with R, small and R,
large, is worthless in this condition
of grid-current flow. The frac- ,;J'L ¢ S
tional overshoot is large because the
high grid resistor has no effeet, but R,
the recovery is very slow because
the high grid resistor is then L
effective. &3 TTC

In this analysis it has been as-
sumed that the plate-load resistor
R; has been returned to ground
instead of to B* as is actually the case in an amplifier. This fact has no
effect on the overshoot calculation in that it merely adds a d-c com-~
ponent to the voltage across R,.

Similar calculations can be made for the decoupling, screen bypass,
and cathode bypass circuits shown in Figs. 3-2, 3:3, and 3-4. The results
are shown in Table 3'1.

It should be noted that the overshoot in the decoupling cireuit is of the
same sign as the signal, instead of the opposite sign as in the case in
coupling circuits. Its amplitude depends on the plate-load resistor

Fic. 3-2.—Decoupling circuit.

F1i. 3-3.—Cathode bypass circuit. Fic. 3-4.—Svreen bypass circuit.

and is independent of the decoupling resistor. The decay time constant
is, however, proportional to the decoupling resistor.

The screen and cathode circuits behave like the coupling circuit,
except that in both of these cases tube resistances shunt the resistor
determining the time constant. Also, since the coupling condenser
blocks direct current completely, whereas the screen and cathode bypass
condensers merely degenerate the d-c¢, the fractional overshoot is multi-
plied by a factor of slightly less than unity. This factor becomes
unity if the degeneration is complete. In the case of the screen bypass
condenser this factor is complicated and involves the control character-



118 PULSE AMPLIFIERS OF LARGE DYNAMIC RANGE [Skc. 32

istics of the screen grid. Since its effect in most practical cases is negli-
gible, it is omitted in Table 3-1. The result is, therefore, a somewhat
conservative approximation. Similar simplifying assumptions have been
made in the cathode bypass case.

TaABLE 3-1.—FRACTIONAL OVERSHOOT AND RECOVERY-TIME CONSTANT FOR COMMON

Circurrs
.. . Fractional overshoot, Recovery time
Circuit Fig. LT constant T
. T _r
Coupling.................... 31 BivR)C-T (By + R)C
Decoupling.................. 32 FIE' = &% R,C
1 1

Cathode bypass.............. 33 %’i ¢ 1

gm + m

Ry
Screen bypass............... 34 % lﬁ

All of these calculations are subject to the approximation r << T.

Cascaded Overshoots.—Since each condenser produces an overshoot, it
it necessary not only to understand how a single overshoot is generated
but also to ascertain the effect of
several overshoot-producing cir-
cuits in cascade. Consider first the
response of the simple coupling cir-
cuit of Fig. 3-1 to a signal that has
already passed through such a cir-
cuit in a previousstage. The input
pulse then has a slightly drooping
top and is followed by an overshoot
as shown in Fig. 3-5. The action
during the pulse itself is very similar

e[_e”l_e to the case of the flat pulse, except
p that the charge on the condenser is

Fig. 3-5.—Waveform produced by cou- Shghtly le.ss.because of the d.ecrease
pling circuit whose input contsins & pulse 1D the driving current during the
that has already passed through one such pulse. This is a second-order effect
stage- and can generally be disregarded.
Thus, the voltage across the condenser at the end of the pulse can be
calculated from Eq. (3).

At the trailing edge of the pulse, the 1nput current drops not to zero,
as in the previous case, but to the negative value of the overshoot pro-
duced by the previous stage. This current produces an output voltage
that is the same in per cent as the input overshoot. To this voltage is

iy
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added the voltage across the condenser, and an overshoot is thus produced
whose amplitude is the sum of the original overshoot and the one that
would be produced by this circuit if there were no previous overshoot
present.

The decay of this double overshoot is more complicated than that of
the single case. The sudden change in sign of the signal at the end
of the pulse is followed more slowly by the condenser, which discharges
and then charges in the opposite direction, aiming always for the point
at which the condenser voltage equals the input voltage and the output
voltage is zero. The waveforms for this case are shown in Fig. 3'5.
Since the input signal is decreasing exponentially while the condenser
voltage is increasing, a point (point
p in Fig. 3-5) is reached where the
two curves cross and the input volt-
age crosses the baseline. The con- Fig. 3:6.—~Waveform of pulse obtained
denser now discharges, its voltage from several successive coupling-circuis
being always greater than the in;?ut ;‘fr‘l‘f‘}zr ef:;,"‘;;’;i,ﬁ;‘é cirouit, of the base-
voltage. This discharge action
produces a secondary overshoot in which the voltage rises to a maximum
in the same direction as the original signal and then drops exponentially
to zero, as shown in Fig. 3-5.

Each successive condenser adds another overshoot. Thus after a
number of such stages a waveform similar to that shown in Fig. 3:6 is
obtained.

Although the preceding analysis presents a good qualitative picture
of the secondary overshoot, in order to obtain quantitative information
about its amplitude and duration it is necessary to go to a more rigorous
mathematical treatment. Consider then the differential equation for
the circuit of Fig, 3-1:

dez

[7) Rle d’tl
=4 ==
di

T~ &+ B d )

where ¢ is the output voltage, 7 is the input current, and 7 is the time
constant (B, + R:)C. The solution of Eq. (9)

-£ R.R di
= T 4 bald T | 2T
e; = Ae (R1 Rz)e / e dl (10)

where 4 is a constant of integration.
If 4, is the result of the overshoots produced in m previous stages, it
can be considered as the sum of exponential terms, each term represent-

ing an overshoot. Thus
S
i = Z Ie T (11)
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where T; is the time constant of the jth circuit, all the 7;’s being assumed,
for the moment, to be unequal. Substituting Eq. (11) in Eq. (10), the

result is
_ RiR, b -7 [ 7
es = Ae + z (Rl TR T e dt
;~1

L E: -t
AT 4 ee T, (T =), (12)
S |
j=1 1 T
where E; = R\R;/(R:, + R,)I; is the output voltage that would be
produced by an input signal I;, if the effect of C were neglected.
If any of the T}s are equal to one another, there are terms in the

i

t
expression for 7; of the form (¢/T;)*¢ Ti, which also appear in the expres-
t

sion for e;. If any of the T,'s are equal to T, terms of the form (t/T)%e T
appear in the expression for e;. The exact values of these terms can be
determined by substitution in Eq. (10}). Because of the complicated
algebra involved in this substitution, only the results for the general case
are given here.

Consider the general case of an amplifier in which, preceding the
circuit being considered, there are r circuits of time constant 7' and s cir-

cuits of time constant 7';, where there are m different values of the time
m

constant T; and n; circuits for each value T;. Then s = z n;, and the
=1
total number of circuits preceding the one considered is therefore

m

r 4+ 2 n;.  Then

=1 v
(t & _% ny I t & _%

i = E Lil=)e T+ E E ; (—) i a)

1 : k 7) . 13 TJ' € (

=0 i=1 k=0
and
-1
L A
ey = Ae T + Ek (T) e T (]3)
k=0
S (0 R )
-7, | \7; 1 \T;
Ew T; F) _ J . , b
+Ez i€ I_Z I_LEU{_)' _T«.—x (b)
7=1 k=0 T, Ui * T,

where E: and Ej; are the products of I and Ii; by Ry\Es/(R1 + R2).
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Equation (13) is quite complicated for use in amplifier design. If the
presence of equal time constants is disregarded in an amplifier and Eq.
(12) is used instead, an error is introduced which is, in general, not
sufficient to alter the order of magnitude of the overshoot. Hence Eq.
(12) is generally used for all rough calculations.

Examination of Eq. (12) shows that each overshoot entering the
input terminals appears at the output terminals modified in amplitude
by the factor 1/1 — (T,;/7T), but with the exponent unchanged. There
is added a term corresponding to the overshoot that would be produced
by this particular coupling circuit in the absence of other overshoots.
The amplitude of this term is dependent upon the initial value of the over-
shoot. Since this has been shown by the previous analysis to be the sum
of the individual overshoots each acting independently, the value of A
can easily be obtained.

Using this analysis it is simple to trace each overshoot through an
amplifier. At each successive coupling circuit an overshoot of given time
constant is changed in amplitude, but not time constant, by a factor
1 — T;/T. Y the time constant T of a coupling circuit is much greater
than the time constant 7'; of the overshoot, 1 — T;/T is close to unity,
and the overshoot amplitude is unchanged by this circuit. This con-
clusion is reasonable, since the charge on a condenser can not change
appreciably during a time short in comparison to the time constant of
the circuit. If on the other hand T is much less than T, the factor
1 — T;/T is very nearly equal to —7;/T. A long overshoot is there-
fore reduced in amplitude by a coupling network having a short time
constant by a factor equal to the ratio of the time constants involved.
Furthermore, the sign is changed, making the long time constant over-
shoot appear on the other side of the baseline. It is this change of sign
which gives rise to secondary and higher-order overshoots.

If T is nearly equal to T';, very large values are obtained for the over-
shoot amplitude. However, in order to satisfy the initial conditions, 4
is also large and opposite in sign to the other overshoot amplitude.
Since T is very nearly equal to T, the exponents of these terms are very
nearly equal for small values of ¢/T. Thus the two large terms
very nearly cancel. To avoid taking the difference between two nearly
equal large terms a good approximation can be made for small values
of t/T by assuming that 7' is equal to T,

Nonlinear Effects—Although ordinary linear-circuit analysis breaks
down in cases where amplifier stages are overdriven, the theory of over-
shoots as described here can still be applied. 1t is merely necessary to
consider the effects of limiting on each signal wherever limiting occurs.
The charging of the coupling condenser by grid current has already been
considered.
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The first effect of limiting is to clip the top of the pulse, as shown in
Fig. 3-7, reducing the amplitude considerably. When limiting occurs,
the term fractional overshoot, as used in the preceding analysis, becomes
ambiguous. This term was defined in reference to the signal amplitude
at the point where the overshoot is produced. Thus the actual amplitude
of an overshoot of 1 per cent, pro-

{\\\ duced before limiting, will be greater
| h at the amplifier output terminal
J— than a 10 per cent overshoot pro-

duced after limiting has reduced the
signal amplitude by a factor greater
than 10. Therefore, although the
use of fractional overshoot is con-
venient for the calculation of a
single circuit, it is better to convert
to absolute values in volts before combining the effects of several circuits.
If this is done, there is no difficulty in using the methods previously
outlined.

The shape of the top of the pulse depends upon whether the limiting is
caused by driving the grid of a tube beyond cutoff or into the positive
region. If the tube is cut off, the top of the pulse appearing on the plate
must be flat, as shown in Fig. 3-7, because changes in the grid voltage
below cutoff have no effect on the plate current. However, if limiting
is produced by driving the grid positive, an increase in the grid voltage
still increases the plate current, even though considerable power is
required from the driving source. The top of a pulse limited by grid
current still has & nonzero slope, although it is very much less than the
slope of the input pulse.

As long as the pulse alone, and not the overshoot, is clipped, Eq (13)
holds without reservations. The limiting affects only the value of the
constant A, which is chosen to meet
the initial conditions as modified by A

!
|

Fie. 3-7.—Limiting.

the clipping of the pulse. In most N

cages, the overshoot amplitudes are \\\

kept sufficiently low so that they a )

are not clipped. 1If as in Fig. 3-8

this is not true, Eq. (13) still applies, l/

but allowance must be made for the

discontinuity. The limited portion Fig. 3-8.—Limiting of an overshoot.

of the overshoot (between points

a and b in Fig. 3-8) can be considered as a single overshoot, having an
infinite time constant. The constant 4 of Eq. (13) can be found from
the initial conditions (Point a¢). The portion of the overshoot following
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Point b is the same as if there were no limiting, except that a new value
of the constant A, determined by the conditions at Point b, is again
required.

3-3. Circuit Design for Minimum Overshoot.—Since the magnitude
of the overshoot produced by a given circuit is inversely proportional
to the time constant of the circuit, it is theoretically possible to make all
overshoots negligible simply by making all the time constants sufficiently
large. Practically, however, there is a limit to the maximum usable
values of resistance and capacitance, and it is generally impossible to
design a high-gain amplifier with no overshoots at all. Furthermore,
even if it were possible, some form of low-frequency-rejection filter to
eliminate microphonics would still be needed. This filter would neces-
sarily introduce an overshoot, since it would effectively introduce a short
time constant.

Although it is impossible to eliminate overshoots completely, it is
advantageous wherever possible to design circuits so that the overshoots
produced by them are negligible at the output terminals of the receiver.
The magnitude of the overshoot following a very strong signal must
therefore be negligibly less than the magnitude of a very weak signal, or
else the fractional overshoot must be negligibly less than the ratio of the
weakest signal to the strongest.

Because of limiting, the dynamic range of signals actually present
at any given point in the amplifier varies from point to point in the
amplifier. At each point of limiting, all signals above a certain amplitude
are clipped. The dynamic range beyond this point is thus reduced, and
therefore the allowable fractional overshoot is increased. Thus the first
few circuits have the most severe requirements on the time constants
in order to eliminate overshoots. The nearer a given circuit is to the out-
put end the shorter its time constant can be without introducing appre-
ciable overshoot.

If the dynamic range of an amplifier is one million, the fractional
overshoot produced by any circuit preceding the first point of limiting
must be less than one-millionth if the overshoot is to be negligible at the
output end. This condition can generally be achieved only if there is a
short time constant later on in the amplifier. If all time constants were
long, the fractional overshoot produced by the first circuit would be
approximately equal to the ratio of the pulse length to the time constant.
To make this negligibly less than 10~% a time constant of the order of
seconds would be required for a 1-usec pulse. It is impossible to obtain
this value of time constant in most practical cases. As discussed in
Sec. 3-2, use of a short time constant 7', later in the amplifier reduces the
magnitude of the overshoot of time constant T; due to the first circuit
by 1 — T/T,. In most practical cases this is approximately the ratio
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of the time constants. The fractional overshoot for the overshoot of
time constant T is then given by

RN
=TT, T (14
Solving Eq. (14) for T, yields
Ty = TTTZ- (15)

Assuming that the overshoot must be one-tenth of the weakest signal
in order to be negligible, a is 10~7 for a dynamic range of one million.
Then, assuming as typical values r = 2 usec and T, = 5 usec, Ty is found
to be equal to 10,000 usec, which is not an unreasonably high value for
some circuits.

Overshoots tn Conventional RC-circuits.—The expressions for the frac-
tional overshoots of the common RC coupling, decoupling, cathode-
bypass, and screen-bypass circuits are given in Table 3-1.

For coupling circuits, the upper limit on grid resistors for most tubes
is about 1 megohm. If no grid current is drawn, a condenser of 0.01 uf
gives a time constant of 10,000 psec. If the value of the resistor is
closer to 0.1 megohm, the condenser required is 0.1 uf. These are
reasonable values for use in most amplifiers, except those where extremely
small size is required. However, the use of a " postage-stamp” size
0.01-u4f condenser with a l-megohm grid resistor allows a fairly small
amplifier to be built.

If grid current is drawn, the grid resistor is shunted by the input
conductance of the tube and no longer affects the time constant, which
is now dependent upon the plate-load resistor and coupling condenser
only. Since the plate-load resistor must carry the plate current of the
tube, values higher than 50,000 ohms are not generally used. Although
some special applications allow the use of a higher resistor, triodes are
used in these cases for certain reasons discussed below (see Sec. 3-5).
The plate resistance of the triode, therefore, effectively shunts the load
resistor, and the parallel combination is generally less than 50,000 ohms.
The coupling condenser required for a time constant of 10,000 psec is
therefore at least 0.2 uf and is generally higher. FElimination of over-
shoots therefore becomes impractical with simple RC-coupling if grid
current is drawn. Note that the use later in the amplifier of several
small time constants instead of only one introduces another factor in
Eq. (14) reducing the fractional overshoot a. This procedure allows the
use of a time constant smaller than 10,000 usec in the first circuit.

Decoupling circuits can generally be designed for negligible over-
shoot. The plate load and decoupling resistors can commonly be made
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as high as 10,000 ohms. This value of resistance requires a capacity
of 1 uf to get a time constant of 10,000 usec. For a large amplifier this
capacity is allowable, but for small amplifiers some other scheme must be
used. Generally several small time constants later in the amplifier
alleviate the problem,

Screen-bypass circuits require components of the same order of
magnitude as decoupling circuits and are therefore subject to the same
limitations. For this reason, it is often advantageous, especially where
small size is important, to use triodes and eliminate the screen-bypass
circuit.

Table 3-1 shows that the resistance determining the time constant
of the cathode circuit is equal to the g., of the tube. Enormous cathode-
bypass condensers are required to obtain a time constant of 10,000 usec;
e.g., a tube having a ¢g. of 3000 ymhos requires a cathode-bypass con-
denser of 30 uf. For this reason it is common practice to leave cathode
resistors unbypassed. If the cathode resistor is kept small, the loss in
gain due to degeneration is not appreciable. In some cases, the cathode
resistor is bypassed by a small condenser in order to improve the high-
frequency response. In this case the time constant is so short that the
overshoot is negligible and is obscured by the slow trailing edge of the
pulse caused by poor high-frequency response.

Secondary Overshoots in Circuits with Two Short Time Constants.—
When there are two short time constants, it can be shown by considering
Eq. (12) that there will, in general, be a secondary overshoot. The
factor 1 — T';/T is negative for the term involving the larger of the two
time constants. After a sufficiently long time the term having the
shorter time constant becomes neg-
ligible with respect to this term.
Since its sign is negative, it repre~
sents an overshoot in the opposite
direction from the original over-
shoot and therefore a secondary
overshoot. The time at which the
crossing of the baseline occurs is
always equal to some valuebetween  Fic. 3.9 —Elimination of secondary over-
those of the two time constants and shoot by drawing grid current.
can be found by equating the two terms. Hence, the secondary over-
shoot can be considered to be of negligible magnitude only if the longer
time-constant overshoot is negligibly small.

Elimination of Secondary Overshoot by Means of Grid Current.—By
use of grid current, the secondary overshoot normally produced by two
short time constants can be avoided. As shcwn in Fig. 3-9, the charging
of the coupling condenser by grid current produces an overshoot so much
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larger than that in the ordinary case that it completely obliterates the
secondary overshoot normally present. The recovery in this case is, of
course, poorer than in the absence of grid current; however, in some
applications elimination of the secondary overshoot is more desirable
than quick recovery.

This effect can very easily be considered quantitatively by using
different values for the charging time constant and the discharging time
constant of the circuit drawing grid current.

Let T3, be the time constant of charge of this circuit and Ty the time
constant of recovery. The expression for the instantaneous overshoot
voltage, given by Eq. (12), involves T'» only, since there is no grid current
during the overshoot. (This assumption supposes no secondary over-
shoot, which would drive the tube into the grid-current region again.)
Let 71 be the other short time constant in the amplifier. Then, sub-
stituting in Eq. (12),

(16)

A is determined by the initial value of the overshoot. Since the initial
value is determined by the charging of the coupling condenser, 7'y, is not
involved. Thus the fractional overshoot is the sum of those overshoots
produced by T2, and T, acting independently, or

T

-
@= T; + TZu. (17)
Substituting this equation into Eq. (16) at { = 0 and solving for 4,
_ Tw—-—T,— Ty
A =TT Tw = Ty (18)
Substituting this into Eq. (16),
i
_ T1(Tgb - T1 o Tzu) —Tt; TC—T—‘
= T Tn—=Ty ¢ T ; (19)
Ti{1 — &+
Ty

If Ty = Ty + Ts, both terms have the same sign, and there is no
secondary overshoot. Optimum recovery occurs when Ta = Ty + T,
and the first term drops out. In this case, the recovery is the same as
if the second coupling circuit were absent.

Choke-coupled Circuit.—It has been shown that when grid current is
drawn, the plate-load resistor must be made as high as possible to reduce

the charging time constant of the coupling condenser, Since this
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produces a large voltage drop across the resistor, considerable power is
wasted. A high supply voltage and a high-wattage resistor are neces-
sary. To avoid these complications, a choke can be used in place of the
plate-load resistor. The choke acts as a high impedance during the
charging of the coupling condenser but has a negligible d-¢ voltage
drop. The circuit is shown in Fig. 3-10.

In a circuit of this type, the inductance of the choke may resonate
either with the stray shunt capacity C, or with the coupling condenser
C., producing a train of damped

. . . B
oscillations following each pulse. '
This train of oscillations is effec- Lo,
tively a series of overshoots and is (‘

therefore highly undesirable. To
avoid this effect, both circuits must ]

be damped by the grid resistor so i

that the transient following the R :‘#:CS
pulse is not more than a single or

at the most a double overshoot. -

Since the value of the grid resistor = L
is determined by the amount of gain Fia. 3:10.—Choke-coupling circuit.
desired, the induetance of the choke is determined by the condition for
greater than critical damping. Thus

C.R?
L s

=1 (20)
L = 4C,R*.

The overshoot produced by the charging of the coupling condenser can
be analyzed in the same manner as that for the coupling circuit of Sec.
3-2. At the start of the pulse there is no current flowing in the choke.
Therefore all the current must be charging the coupling condenser. If
the pulse length is short compared with the resonant period of the tuned
circuit formed by the choke and the coupling condenser, the current flow
through the inductance is negligible and the approximation can be made
that all the current flows through the condenser during the pulse. The
voltage across the condenser at the end of the pulse is then

It

€c, = a (21)

The discharging of the condenser through the choke and the grid
resistor can be broken up into two parts: (1) the building up of the current
in the choke and (2) the discharging of the condenser. This simplification
is possible because the time constant of the inductance circuit is very
short compared with the discharge time constant of the condenser. The
condenser can therefore be considered as a source of constant voltage while
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the current builds up in the inductance; the inductance can be considered
as a short circuit during the discharge of the condenser.

At the instant of the trailing edge of the pulse, there is no current
flow because of the inductance of the choke. The full voltage of the
condenser appears across the choke. The current then increases exponen-
tially, approaching a steady-state condition where the full voltage across

the condenser appears across the

/-l resistor. The time constantis L/R.

. _ The condenser discharges with a

V time constant RC as in the conven-

i tional RC-coupled eireuit. This is

L shown in Fig. 3-11. Thus the aver-

Fio. 3-11.—Overshoot produced by choke- g} ot differs from that produced by
coupling circuit. . N .

RC-coupling only in the slow rise

time caused by the charging of the inductance. The magnitude of the

overshoot is equal to the original voltage across the condenser, which is

given by Eqg. (21). Since the magnitude of the signal is

e = IRy, (22)

the fractional overshoot is
.
a = R, (23)
Typical values for a choke-coupled circuit are R, = 27,000 ohms,
L = 85 mh, and C, = 0.02 4f.

The time constant of the inductive circuits is then 3.15 usec, which is
small compared with 540 psec, the time constant of discharge of the con-
denser. This value is far from the 10,000 usec needed for elimination of
the overshoot. Choke coupling is therefore not used in applications
where overshoots are not allowable.

“Smearer’’ Circuit—The type B+
of circuit commonly called a R
““smearer” is similar in prineiple —

to the method of using grid current
to eliminate a secondary overshoot.
This circuit makes use of the sharp
drop in plate resistance that occurs
when a tube is driven positively
from a point where the plate cur-
rent is low. Figure 3-12 shows a
smearer. The tube is operated
with a very high plate-load resistor shunted by a condenser C,. 'This
condenser can be an actual capacitor, but in many cases the stray
capacity is sufficient.

3
]
£

Fi6. 3-12.—~8mearer circuit.
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A positive signal on the grid of this tube drives it into a highly con-
ducting region where the plate resistance is low. The condenser C, is
therefore charged very rapidly, as the time constant is short. At the end
of the pulse, the negative overshoot on the grid cuts the tube off, thereby
raising the plate resistance of the tube to infinity. The condenser C,
must therefore discharge through the high plate-load resistor R. Since
this time constant is long, the negative signal at the plate comes back
exponentially to the baseline. If this time constant is sufficiently long
compared with the time constants of the overshoots, the overshoots are
completely eliminated, at the cost, however, of stretching the pulse con-
siderably and obscuring any weak signals that may be present during the
decay of the pulse.

Since the decay of the pulse in this type of circuit is exponential, the
previous analysis of cascaded overshoots applies to this circuit as well, and
an analytic treatment of it similar to that for the double short-time-con-
stant circuit is possible.

Diode Clippers.—An obvious method of eliminating overshoots before
they have an opportunity to be amplified and to produce secondary over-
shoots is to clip them by means of diodes as they occur. A diode, intro-
duced into the circuit after each overshoot is generated, should pass the
signal but reject the overshoot, which is in the opposite direction. Unfor-
tunately, this simple procedure is not practical for several reasons:

1. Since there is no perfect diode having a sharp discontinuity in its
resistance, diodes act as ideal diodes only at high levels. Thus, if
there are two overshoot-producing circuits in the early stages of the
amplifier, diodes are of little use, since the secondary overshoot
produced at low levels is in the same direction as the signal and
cannot be eliminated at high levels by a diode.

2. Because the diode does not act as a perfect short circuit in one direc-
tion and a perfect open circuit in the other, overshoots are not
completely clipped by the diode but are merely attenuated. Thus
a strong overshoot may come through a diode in sufficient magni-
tude to cause trouble later on.

3. The impedance of a diode in the backward direction, particularly
at low levels, is far from infinite. Thus a diode loads the circuit in
which it is introduced. This is particularly serious when the stage
gain is high and all extraneous loading must be avoided.

4. In clipping an overshoot, a diode also obliterates all weak signals
occurring during the overshoot. This effect is illustrated in Fig.
3-13.

Despite these disadvantages, diode clippers can be used advanta-
geously in numerous applications as long as their limitations are kept in
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mind. The new germanium crystals,® which are considerably better than
most common vacuum tubes for this purpose, may make possible the use
of diode clippers in applications for which & vacuum-tube diode could not
be considered,

There are several types of circuits in which dicdes can be used. The
series diode, shown in Fig. 3-14a,
presents a low impedance to the
signal and a high impedance to
the overshoot, thus attenuating it

———= by a factor equal to the ratio of

! - -7 the diode load resistance to the
vt (e diode back resistance. BSince the
[ |4 . . .

W diode forward resistance is not zero,

Fra. 313.—Loss of weak signal when there is some attenuation of the
clipping overshoot. signal as well.

The shunt diade, shown in Fig. 3-14b, presents a high impedance to the

signal and shunts the overshoot with a low resistance. The reduction of

MmN

._. 7

¥1a. 3-14a.—8eries diode. Fia. 3-14b.—~Shunt diode.

—de

overshoots resulting from use of a shunt diode is a function of the resist~
ance of the cireuit in which it is inserted and is equal to the ratio of the
circuit resistance to the diode back

resistance. Here, again, there is 1
some attenuation of the signal itself, W

this time because the back resist~
ance js finite. B?fr\i %
ZD
=

In using diodes, care must be
taken not to produce unintentional
“smearing” of the signal by the
slow discharge of stray capacitances
through the back resistance of the
diode. In the series diode, shownin Fig. 3-14a, smearing can happen
unless the diode resistor is small.

Fia. 3-15.~—Delay-line coupling circuit.

1 See Vol. 17, Chap. §, of this series.
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Diodes used directly in the circuit producing the overshoot do more
than merely clip the overshoot. If a shunt diode, for example, is used
in place of a grid resistor, the coupling condenser charges through a high
resistance. The charging time constant is therefore long, producing a
small overshoot. Moreover, the condenser discharges through a low
resistance, thus recovering much
more rapidly than would normally
be expected. This same effect can
be obtained without an auxiliary
diode in a stage where the grid is —T
driven negative, and any overshoot
produces grid current. The grid-
cathode circuit here acts as a diode,
but only when there is no overshoot
present before this stage. Any
earlier overshoot is not shortened

Fia. 3-16.—Response of delay- F1G. 3-17.—Advantage of rectangular over-
line circuit to pulse. shoot.

by this short time constant; instead it charges the coupling condenser in
the opposite direction through the low-impedance path of grid circuit or
diode and produces a serious secondary overshoot.

Delay-line Grid Circuit.—If a delay line is used in the grid circuit of an
amplifier, as shown in Fig. 3-15, a pulse at the input terminal travels to
the end of the line and is reflected back in opposite phase. This reflected
pulse in turn produces a second pulse, equal and opposite in sign to the
original, and delayed by a time which is twice the length of the line, as
shown in Fig. 3-16. This reflected signal can be considered as an over-
shoot, which, instead of being exponential in shape, is rectangular. If
the duration of an overshoot is defined as the time required for it to decay
to a given absolute level, the rectangular overshoot has the great advan-
tage of being constant in duration, regardless of signal strength, whereas
the duration of the usual overshoot with exponential decay increases with
signal strength. Thus the weak signals following a rectangular overshoot
are preserved, whereas those following an exponential can be lost, as
shown in Fig. 3-17.

The effect of the delay line upon a long overshoot is illustrated in Fig.
3-18. The delayed signal is subtracted from the undelayed signal to give
the resultant. The difference in amplitude between the delayed and the
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undelayed signals is the amount by which the undelayed signal has
decayed during the delay and is equal to the amplitude of the overshoot:

ta
= —a(l —¢ T) =a b (24)
T

where a, is the fractional overshoot of the original signal, ¢, is the delay
time, and 7 is the time constant of the overshoot. This relation is very
much like that for the reduction
of overshoots by the factor of
1 — T:/Ts by circuits having short
time constants. Thus, the delay-
line circuit behaves with respect to
previous overshoots like a circuit
having a time constant equal to the
delay time.

The main disadvantage of the
delay-line circuit is that the charac-
teristic impedances of common de-
lay lines are considerably lower
than the load impedances generally
desired in a high-gain amplifier.
Reflected signal The use of this type of circuit,
| therefore, causes a loss of gain in

all amplifiers except wide-band

amplifiers, which use low load

resistors. Also, there is a small

loss in signal-to-noise ratio because
I the delayed noise adds to the
undelayed noise, increasing the
noise power.,

This analysis has assumed
ideal behavior of the line circuit.
Actually there is attenuation in
| ] the line, and the reflected signal

F1e. 3-18.—Effect of delay line upon is not so large as the original.
signal with overshoot (delay time equal to  This effect modifies Eq. (24),
pulse width). replacing the 1 by a number
less than unity. Note that if the attenuation of the line is correctly

12
adjusted, this number can be made equal to ¢ 7, in which case the over-
shoot completely cancels out. This adjustment is generally not practical
for large-scale production but is useful in the laboratory.

If the line is not terminated in its characteristic impedance, there are
multiple reflections, producing multiple overshoots. Even if these over-

Original signal

Resultant signal
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shoots are small, they are important for a sufficiently large signal. The
inherent advantage of the rectangular overshoot over the exponential
is then lost. If the terminating impedance is less than the characteristic
impedance, there is a reversal of sign on reflection, and a signal of the

— T e

F16. 3-19a.—Pulse response of delay-line circuit terminated in too low an impedance.

same sign as the original signal is sent down the line. All the reflections
are therefore of the same sign as the first, and the result is a lengthening
of the overshoot in steps, as shown roughly in Fig. 3-19a. If the termina-
tion is higher than the characteristic impedance, there is no sign reversal,
and the signal is reversed in sign once each trip, thus producing reflections

Fig. 3-19b.~—Pulse response of delay-line circuit terminated in too high an impedance.

of successively alternating sign. This produces multiple overshoots, such
as are roughly shown in Fig. 3-19b.

Exact termination is difficult, especially with commercial tolerances on
resistors. The maximum per cent overshoot that can be expected is
roughly the tolerance of the resistor used. The difficulty of termination
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is accentuated by any nonlinearity in the grid circuit, such as would
occur with a positive signal strong enough to draw grid current. For this
reason a certain degree of mismatch is to be expected; and since it is pref-
erable to have a lengthened single overshoot rather than multiple over-
shoots, it is desirable to design the termination slightly lower than the
characteristic impedance. This still gives a result sufficiently better

—L_I— than simple RC-coupling to justify

its use for some applications.
] The combination of germanium-
crystal clippers and delay lines is

- very effective. A crystal in series

with the termination prevents load-

E%%—% 7 ing of the original signal by the

§ 0 termination but still acts as a match

for the reflection, which is opposite

in sign. The nonlinear effect of

= the grid circuit on the termination

— can be eliminated by use of a series

F16. 3:20.—Delay-line circuit using crystal crystal, which allows the original

clippers. signal to pass but acts as an open

circuit for the reflected signal. This crystal also automatically clips the
overshoot. A circuit of this kind is shown in Fig. 3-20.

Inverse-feedback Pairs.—The inverse-feedback-pair circuit deseribed in
Chap. 6 can be used in a high-gain video amplifier to improve the over-
shoots. Because of two effects, considerably better performance can be
obtained from a properly designed feedback pair: (1) If a feedback-pair
amplifier is designed so that negative signals appear at the input terminals
of the pair, the constants of the pair may be adjusted so that without
excessive loss of gain the positive signal appearing at the second grid is
limited to a value that does not cause grid current to flow. (2) Feedback
also has the effect of reducing the overshoot of the interstage coupling
circuit by a considerable factor from what it would be in the absence of
feedback.

Tt is shown in Chap. 6 that the relative values of the load resistors in a
feedback pair can be adjusted without changing the over-all response of
the pair, provided that the feedback resistor is properly varied. This
adjustment has the effect of varying the relative gains of the two stages
without changing the over-all response. Overloading of the second grid
can therefore be minimized by putting as much gain as possible in the
second stage and as little as possible in the first. The maximum signal
appearing at the second grid is then much less than in a circuit with the
same over-all gain and no feedback, and the overshoot on the maximum
signal is not so great. ‘In some cases, it may even be possible to design

-~
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the pair so that no grid current is drawn at all; this is a considerable
improvement.

The theory of Chap. 6 cannot be applied to this problem without
reservations, because large signals drive the tubes over a sufficiently wide
range to make the assumptions of linearity invalid. Some theory using a
nonlinear characteristic or making certain approximations can perhaps
be worked out, but this has not yet been done. The procedure for design-
ing this type of amplifier has been
one of cut-and-try, using the tube-
characteristic curves given in the R, R,
tube manuals. R

The effect of feedback upon ,v\l;\,
overshoots can be calculated by
using the same fundamental ap-
proach as was used in Sec. 3-2. If —
the time constant of the circuit is R
assumed to be long in comparison T
with the pulse length, it is possible = —+—
to calculate from the charging cur-
rent and the pulse length the volt~
age appearing across the coupling condenser at the end of the pulse.
Thus, for the circuit of Fig. 3-21, the voltage across the condenser at the
end of the pulse is

B+

Fig. 3-21.—Inverse feedback pair.

o= T _Ei1
T C R,C
where E, is the amplitude of the signal pulse appearing at the grid of the
second stage. The portion of this that appears across the grid resistor
at the end of the pulse can be shown to be
b R,
e p o Bt Rk gnFBoR,
7 R1+R2+R12 R1+R2+R12

Substituting Eq. (25) in Eq. (26) one finds the fractional overshoot to be

, (25)

(26)

a="5 _ &0 fc_ T (27)
c [ R 4+ — InRiR:R, (R:R12)R, ]
e R, + R+ R Ri+ Ry + Ry

T

B 14 B
CR ( ng1R2 ) 1 + Rz + Rl + R2 + R12
v R1 + R2 + R12 ngg ng1R2

P
ngle
R+ R: + R

=~

CR
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Thus for an amplifier where no grid current is drawn, so that R, can
safely be made large, the fractional overshoot is reduced by a factor of
gnBi1R:/(R1 + R2 + R12) over that of an amplifier without feedback.
This effect is very useful in the early stages of high-gain amplifiers where
huge capacitors would otherwise be necessary to eliminate overshoots.
As an example, consider the following typical values for such a circuit:

R1 R, = 10,000 ohms.
R,, = 50,000 ohms.
gn = 3000 pmhos.

For these values, the fractional overshoot is improved by the appreci-
able factor of 6.

The recovery time constant, as might be expected, is given by the
denominator of Eq. (27);

1+ R—”
T = CR ng1R12 1+ R, R.+ R, + Ry
‘\Ri+ R: + Ry gmity gl 1Ry
R\R
~ CR, (. gnftrftz ) 2
"<R1+R2+R12 (28)

Direct-coupled Inverse-feedback Pair.—The obvious method for elimi-
nation of the problem of charging
of the coupling condenser by grid
current is the elimination of the
coupling condenser. Any conven-
JV\‘/\V tional direct-coupled circuit can be
used, carrying along with it the
usual disadvantage of direct-cou-
pled circuits, in particular, the need
for a more complicated power sup-
ply. Use of an inverse-feedback

c .. . . . .
= T pair in conjunction with direct cou-
pling, as shown in Fig. 3-22, allows
Fra. 3-22.— Direct-coupled inverse-;eedback the use of an ordinary power Sul?ply
pair. of the type used for other video

amplifiers.!

In this circuit, the first tube of the pair is generally operated at a low
plate voltage, at which the tube still performs satisfactorily as an ampli-
fier. The grid of the second tube is directly coupled to the first plate,
and the large second cathode resistor furnishes sufficient cathode bias to
bring the cathode potential above the grid potential by the desired

B+

! The unique advantages of the direct-coupled inverse-feedback pair were dewion-
strated by R. J. Grambsch at the Radiation Laboratory.
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amount. Because of the two types of d-¢ degeneration present in this
cireuit, it is unusually stable with respect to power-supply and tube varia-
tions. The unique feature that enables its use as a practical amplifier
is the effect of the feedback in reducing overshoot caused by the cathode
bypass condenser, thus making possible bypassing of the large cathode
resistor, which would otherwise cause a high lossin gain due to degeneration.

By an analysis similar to that for the inverse-feedback pair, it can be
shown that feedback reduces the cathode-circuit overshoot by the same
factor as it reduces the coupling-circuit overshoot in the capacity-coupled
feedback pair. This factor is given by Eq. (26), with R, taken as infinite.
Therefore, the factor by which the fractional overshoot is reduced is
1 + (ng1R2/R1 + Rz + R12)-

Thus it is possible to design a direct-coupled feedback pair in which
the cathode of the second stage is bypassed. This has the advantage over
all other types of circuits considered here in that it eliminates the problem
of grid current. Note, however, that it is restricted to the case where
negative signals only are impressed upon the first grid of the pair; for
amplifiers that must handle both positive and negative signals this type of
circuit is useless.

Effect of Shunt Capacitance—The shunt capacitance to ground always
present in coupling circuits has

. C
been neglected thus far because, in T
R ? — T
common RC-coupled circuits, its N !
effect is only to slow up the leading i !
and trailing edges of the pulse, =iz¢; 2220,
since this capacitance must be i 21?’ §R2 i
[\ ! ) i
) [}
i i
— d
Fig. 3:-23.—Usual effect of Fic. 3-24.—Coupling circuit including shunt
shunt capacity. capacity.

charged before any voltage change takes place. Thus the usual effect of
shunt capacitance is that shown in Fig. 3-23.

With some of the special circuits described here, such as the choke-
coupled or feedback circuits, another effect of shunt capacitance may be
present which leads to overshoots. This effect can ocecur in all circuits
where the full voltage across the coupling condenser does not appear as a
signal on the grid after the pulse but divides between several branches.

Consider the typical coupling circuit of Fig. 3-24, with shunt capaci-
tances C, and Ca. At the end of the pulse, before there is current flow in
the resistors to bring about the distribution of voltages discussed in Sec.
3-2, there will be a brief flow of current charging up the capacitances C,
and C,. The voltage on the coupling condenser is thus divided between
the grid and plate circuits inversely as the associated shunt capacitances.
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Therefore the magnitude of the overshoot depends upon the ratio of the
capacitances rather than on the ratio of the resistances, as was mentioned
in Sec. 3-2.  As current begins to flow through the resistors, however, the
charge on these shunt capacitances changes, and the conditions of the
pravious analysis hold. The time required for this change to take place
depends upon the time constants of the shunt capacitance and the load
resistors.

The initial magnitude of the overshoot as caused by this shunt capaci-
tance can differ considerably from the values obtained from the previous
analysis. Thus for the case where R, is very much greater than R, or for
the analogous cases of choke coupling and inverse feedback, which depend
for their effectiveness upon having only a small portion of the condenser
voltage appearing on the grid, the
actual initial overshoot may be con-~
siderably greater than would be

expected from Table 3-1 or from
rf Egs. {23) or (27). This effect is of

comparatively short duration, as
the ratio of its time constant to that
of the expected overshoot is equal
to the ratio of the shunt capacitance to the coupling condenser. Thus
it appears as a sharp spike at the beginning of the overshoot, as shown in
Fig. 3-25.

This effect may be troublesome in cases where the circuit has been
designed to have a negligible overshoot according to previous considera-
tions. The spike may be enough larger than the overshoot to come
through the amplifier as an appreciable signal. Because it depends tv a
large extent upon stray capacitances, the effect is difficult to track down
experimentally. One obvious cure is to transfer the spike to the plate by
loading the offending grid circuit with a small condenser; this changes
the distribution of the coupling-condenser voltage between the plate and
grid circuits.

3.4. Design Considerations.—In the design of a complete amplifier,
the individual eircuits are chosen and combined in order to give the desired
over-all performance. Because of the serious overload problem, the main
consideration is usually one of overshoots; however, there are also other
factors that must be considered.

Recovery.—A strong signal passing through an amplifier produces over-
shoots obscuring following signals. The amplifier is ready for normal
operation only after these overshoots have decayed to a level less than the
weakest signals handled by the amplifier. The recovery time of an
amplifier can then be defined as the time required for the decay to occur
after the strongest signal that the amplifier can handle.

Fia. 3-25.—S8pike often produced by shunt
capacity.
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Overshoots that are reduced to negligible amplitude at the output
terminals of the amplifier can still be damaging to recovery. Overshoots
produced by long-time-constant circuits are often easily reduced to
negligible magnitude by a short time constant later in the amplifier.
However, if the overshoot attains a sufficient magnitude to overdrive
any stage before it encounters the short time constant, it causes a varia~
tion in gain of this stage over a period of time during this overshoot, even
though the overshoot itself is later reduced to negligible amplitude.
This condition is illustrated in Fig. 3-26, which shows a possible block
diagram with waveforms of the last stages of an amplifier. The signal
at the grid of the first of these stages has a long negative overshoot which
has been produced by an earlier circuit. This overshoot effectively drives
the grid negatively to a point below its normal operating level and holds
it there for a considerable time. During this period the transconductance
of the tube is below normal, and the gain of the stage for any signal occur-

A A e P

Amplifier Short time Qutput
stage constant stage

F1a. 3-26.—Effect of long overshoot on recovery.

ring during this period is low. The output voltage of this stage is
coupled to the output stage through a short-time-constant coupling,
which produces an overshoot of short duration and eliminates the long
overshoot. However, this does not help the recovery, which has been
affected by the loss of gain of the previous stage during the overshoot.
Thus, at the output of the amplifier, no long overshoot is visible, but poor
recovery is indicated by the absence of noise immediately following the
signal. (The output noise level is, of course, proportional to the gain of
the amplifier because the input noise level is constant.)

Equation (5) shows that the amplitude of the overshoot produced by a
coupling circuit is inversely proportional to the time constant of recovery.
Thus for good recovery either the time constant can be made very long,
producing an overshoot of negligible amplitude, or it can be made very
short, producing an overshoot of comparatively large amplitude but
decaying very rapidiy. Both of these approaches must be used in the
design of any amplifier. Between these possibilities lies one value of the
time constant which gives the worst possible result, as can be shown by
considering the expression for the instantaneous value of the overshoot
voltage

t
e T (29)

|

e =

L]
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‘I'his equation assumes that there is only one circuit producing the over-
shoot. If {is set equal to ¢, the recovery time desired for a given ampli-
fier, then differentiation of Eq. (29) shows that the overshoot at this time
is & maximum for 7 = {,. Thus for good recovery the time constant
should be chosen either very much greater or very much less than the
desired recovery time.

If several overshoots are present in an amplifier, the recovery time of
the amplifier is determined by the worst individual overshoot. Since all
short time constants are made as short as possible, several equal short
time constants are often found in amplifiers. The recovery is then longer
than if only one short time constant were present but is of the same order
of magnitude.

Closely related to the problem of recovery is the problem of the allow-
able number of overshoots in a given amplifier. Since there is no possi-
bility of eliminating overshoots completely, high-gain video amplifiers
can be divided into two groups. Those amplifiers in which there is no
secondary overshoot in the same direction as the original signal will be
referred to as single-overshoot amplifiers. Those in which a secondary
overshoot and further overshoots are present will be referred to as multi-
ple-overshoot amplifiers. Whether or not a given amplifier should have
single or multiple overshoots is determined by its application.

Single-overshoot Amplifiers.—Single-overshoot amplifiers have an
advantage over multiple-overshoot amplifiers where the recovery time
desired is of the same order of magnitude as the pulse length. Thus
where extremely rapid recovery is necessary, the single-overshoot ampli-
fier must be used, as it must also in applications where a secondary over-
shoot appearing as a spurious signal would eause difficulty. In some cases
it may be possible to eliminate the secondary overshoot in the output
circuit, as discussed later in this section, but this may involve a sacrifice
in recovery time.

There are several approaches to the design of a single-overshoot ampli-
fier. The obvious method is to make one time constant short to give the
desired recovery and low-frequency rejection, while all the other time
constants are very long. Since it has been shown that a sufficiently long
time constant cannot be obtained in the coupling circuit in the presence
of grid current, it is necessary to prevent the charging of the coupling
condenser by grid current either by ‘‘brute force’” or by use of the special
inverse-feedback-pair circuits previously described, coupled either
capacitively or directly.

In the brute-force method of preventing grid current, the operating
potentials of the stage are chosen so that the maximum output voltage of
each stage having a positive output signal will not drive the succeeding
stage into grid current.
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If the amplifier handles signals of only one polarity, the stages can be
divided into two types: those driven by negative signals and those driven
by positive signals. The maximum output voltage of a negatively driven
stage is that produced by cutting off the tube; this is equal to the voltage
drop in the load resistor. To keep this drop low, a tube that draws a
relatively low plate current for a given ¢. should be used and the tube
should be operated at a low bias. In order to obtain satisfactory amplifi-
cation from the positively driven stage while operating it at a high bias,
the tube used must be one having a reasonable value of transconductance
at a high grid bias. Tubes of high power consumption such as the 6AG7
must therefore be used. If the amplifier must handle both polarities
of signals, high-current tubes must be used all the way through, with each
tube operated at a bias and a current low enough to give a satisfactorily
limited output. Because increasing bias and decreasing plate current
tend to decrease the transconductance, the gain obtainable per stage in an
amplifier required to handle both polarities of signals is considerably less
than in an amplifier handling only one polarity.

The use of inverse-feedback pairs allows the use of common amplifier
tubes operated at comparatively low current. This circuit permits a
considerable saving in weight and power consumption over the brute-
force circuit. Note, however, that this type of circuit is subject to the
spike type of overshoot due to shunt eapacitance described in Sec. 3-3.
The brute-force circuit, where all the voltage across the coupling
appears as overshoot across the grid, does not suffer from this effect.
The inverse-feedback pair is restricted to circuits where only one polarity
of signal is used, and a negative signal is applied to the first grid of the
pair. For this type of amplifier, performance as good as that of the brute-
force circuit can be obtained at a considerable saving of weight and power.
For amplifiers required to handle both polarities of signals, the only
approaches discussed here that can be used are (1) direct coupling and
(2) the prevention of grid current by brute force.

Another possibility for an amplifier required to handle only one polar-
ity of signal is the double short-time-constant circuit discussed in See. 3-3
which eliminates the secondary overshoot by making use of grid current.
Because there are two short time constants to reduce the overshoots
produced in the previous circuits, the time constants of these circuits need
not be so long as in amplifiers having only a single short time constant.
Thus in this circuit a small amount of grid current is allowable in an early
stage, since the overshoot produced can be rendered negligible by the
two short time constants following. This possibility allows even further
simplification of the amplifier than was obtainable with the use of inverse-
feedback pairs and is particularly useful in low-voltage applications where
the power supply does not permit the use of brute force, direct coupling,



142 PULSE AMPLIFIERS OF LARGE DYNAMIC RANGE  [SEc. 34

or inverse feedback. However, the recovery of the double-short-time-
constant circuit is generally not so good as that of circuits using only a
single short time constant, inasmuch as there are two short time constants
to determine the recovery, instead of one.!

Special circuits, such as the delay-line coupling circuit and germanium-
crystal clippers, can be used to advantage in single-overshoot amplifiers.
The delay-line circuit can be used in place of the short time constant; the
germanium crystal can be used wherever a clipper can serve a useful pur-
pose (see Sec. 3-3).

Multiple-overshoot Amplifiers.—For applications where multiple over-
shoots are allowable and the desired recovery time is moderately long in
comparison with the pulse length, a multiple-overshoot amplifier is the
simplest solution. Simple RC-coupled circuits can be used with moder-
ately short time constants in the coupling circuits. Grid current is
allowable provided that the grid resistors are not more than twice the
plate-load resistors, thus making the time constants for positive and
negative signals approximately equal. Bypass and decoupling circuits
can use much shorter time constants than are permitted in a single-over-
shoot amplifier, since there are more short time constants in the amplifier
to reduce the overshoots produced by these circuits. For some applica~
tions the use of circuits more complicated than the simple RC-circuit is
advantageous. The choke-coupled circuit previously deseribed can be
used to some advantage in a multiple-overshoot amplifier to obtain a high
gain per stage. The smearer circuit can be used at some points to improve
the recovery. Delay lines can be used in place of any or all short time
constants with the improvement in recovery discussed in Sec. 3-3. They
are, however, subject to the disadvantages also outlined in that section,
mainly the one of low impedance, which reduces the gain available per
stage. Recovery can also be improved by eclipping overshoots with
germanium crystals, also with a possible loss in gain.

As will be shown later in this section, multiple-overshoot amplifiers
are much less subject to interference from microphonics and extraneous
low-frequency signals than are single-overshoot amplifiers because of the
greater low-frequency rejection afforded by the larger number of short
time constants.

Output Circuits—If the application for which a high-gain video
amplifier is used requires that the output signal be viewed on an indicator,
standard output circuits, such as have been described in Chap. 2, can be

1 According to Eq. (19), it is possible to adjust the time constants of the double-
short-time-constant circuit to eliminate the first term and obtain recovery equivalent
to that of a single circuit. In actual practice the recovery is always worse than that of
a single circuit because of the difficulty of exact compensation. Overcompensation iz
usually necessary to ensure that there be no secondary overshoot.
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used. However, there are many applications where the amplifier output
is never viewed but is merely used as a trigger for some other circuit. For
these applications, it is often advantageous to make the amplifier output
circuit a trigger circuit of some sort.

The most common type of output trigger circuit is the multivibrator,
one form of which is shown in Fig. 3-27. The various types of circuits, the
types of waveform obtainable, and other features of the multivibrator are
discussed elsewhere in this series.! However, there are certain specific
characteristics of these circuits, regarded as output circuits for high-gain
video amplifiers, which will now be examined.

It is generally advantageous to trigger the multivibrator with a
negative signal on the normally conducting tube; in this way the amplifi-
cation of this tube is utilized. Furthermore, the multivibrator action
can prevent the charging of the input coupling condenser by grid current.
If there were no multivibrator action, the positive overshoot would drive
the input grid into the positive region and charge the coupling condenser
with grid current, thus producing
a long secondary overshoot. The
multivibrator action, however,
causes a large negative pulse, hav-
ing a duration determined by the
constants of the circuit, to appear
onthisgrid. If this pulse is greater
in amplitude than the positive
overshoot on the input signal, as
may well be, the grid will remain
negative, and no grid current will
be drawn. Care must be taken,
however, that the positive over-
shoot is not greater than the nega-
tive multivibrator pulse; otherwise the overshoot will serve as a trigger
to the multivibrator, causing the pulse to end too soon.

If a multivibrator output circuit is used with a multiple-overshoot
amplifier, it is often desirable to make the length of the multivibrator
pulse slightly greater than the time required for all the overshoots follow-
ing a strong signal to decay. There is then only one output signal for
each input signal to the'amplifier, regardless of the number of overshoots
produced in the amplifier. This eliminates the possibility of overshoots
appearing as spurious signals and providing false triggers to later circuits.

One variation of this circuit can be used in cases where the original
pulse length is to be preserved, but all overshoots must be eliminated.

Fia. 3-27.—Multivibrator output stage.

1Vol. 19, Chap. 9, “Rectangular waveform generators,” of the Radiation Labora-
tory Technical Series.
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In this case, the input signal to the grid of the normally conducting tube
in the multivibrator is of positive sign, with a negative overshoot as shown
in Fig. 3:28. The positive signal is amplified by the first tube, producing
a negative signal which has no effect on the second tube, which is already
nonconducting. 'The negative overshoot, however, is in the proper direc-
tion to cause multivibrator action, and the resulting multivibrator pulse
can be made sufficiently long to cover all the overshoots. If the output
signal is taken from the plate of the first tube, the result is a negative
signal followed by a large positive overshoot, equal in length to the dura-
tion of the multivibrator pulse. If this overshoot is objectionable, it can
be elipped by a diode.

Another special output circuit is shown in Fig. 3-29. It is used in
amplifiers operating at a low voltage, where it is desirable to get a high-

B+
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Fie. 3-28.—Multivibrator output circuit. ¥i16. 329~ High-~output voltage cireuit.

voltage output signal, usually considerably higher than the supply voltage.
The output stage is a power-amplifier tube, operated to draw a high plate
current through an inductive load. When a negative signal on the grid
of this tube shuts off the current, a high voltage L di/dt is generated across
the inductance; this can be many times greater than the supply voltage.
It is also possible to combine this circuit with the multivibrator by using
an inductive plate load in the tube that is normally conducting.
Microphonies and Low-frequency Interference—In any amplifier that
has a high gain in the audio range, extraneous signals may appear as the
resuli of mechanical shock or vibration or of pickup from adjacent power
equipment. The problem of reducing this effect to a negligible level is
different for each individual amplifier, depending upon the performance
requirements of the amplifier and the particular conditions producing
extraneous signals under which the amplifier will be used. However,
certain general approaches to the problems are applicable in all cases.
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Despite all precautions that may be taken to prevent extraneous
signals from getting into the amplifier, it is almost certain that they will
be present with sufficient amplitude to necessitate their removal by some
sort of filtering in the amplifier. This filtering must be inserted at some
point before the signals reach sufficient amplitude to cause variation in
the transconductance of the tubes, as in the case of long overshoots dis-
cussed at the beginning of this section. The simplest form of such a
filter is the short time constant used in single-overshoot amplifiers, which
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Fia. 3-30.—Attenuation vs. frequency for microphonic rejection circuits. (a) RC-cirecuit,
T = 10 usec; (b) RC-circuit, T = 1 usec; (¢) delay line, ta = 1 usec.

will reject low frequencies to a certain extent. This is shown in Fig.
3-30, which plots attenuation vs. frequency for two values of the time
constant. The shorter the time constant the better the low-{requency
rejection; but if the time constant is too short relative to the pulse length,
the pulse will drop sharply in amplitude during its length; this drop is
generally undesirable. If several short time constant circuits are present
in an amplifier, the low-frequency rejection is much better than with
only one, but there are more overshoots. Thus, in the design of an
amplifier using RC-coupling, the time constants are made as short as
possible without making the pulse response unsatisfactory.

The delay-line grid circuit described above can be used to reject low
frequencies. If the line is lossless, the reflected signal, for any low-fre-
quency sine wave, 1s equal in amplitude and almost 180° out of phase with
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the original signal. Because of the phase delay introduced by the line,
the cancellation is not complete. The cancellation can easily be cal-
culated, since the resultant signal is the difference between two equal sine
waves differing in phase by 2zft;, where fis the frequency and {; is the
delay of the reflected signal with respect to the original signal. The
attenuation-vs.-frequency curve for the delay line is also plotted in Fig,
3-30, showing that the low-frequency rejection of this circuit is very nearly
equivalent to that of an RC-ecircuit having a time constant equal to £,

The choke-coupled circuit has particularly good low-frequency rejec-
tion because it has two frequency-sensitive elements, the choke and the
coupling condenser. It is roughly equivalent to two RC-circuits in
cascade.

As was shown for the case of long overshoots, it is insufficient merely
to make the amplitude of low-frequency signals negligible at the output
terminals of the receiver. The low-frequency rejection eircuit must be
inserted before the amplitude of the extraneous signals is large enough to
change the transconductance of any tube.

The other approach to the problem of extraneous low-frequency signals
is to prevent their occurrence initially. Iaterference brought in by the
power supply can be reduced by inserting appropriate filters in the B-sup-
ply and heater leads or in the power line.  Stray pickup can be reduced by
proper shielding and grounding.  Microphonics can be reduced by shock-
mounting the amplifier, particularly the first tube, and by using tubes
that are less microphonie. The exact extent to which these methods must
be used and the amount of filtering necessary depend upon the relative
difficulty that these schemes impose. Fach amplifier presents an indi-
vidual problem.

Pulse Stretching.—There are some applications for high-gain video
amplifiers requiring that the pulse length be preserved in passing through
the amplifier, regardless of signal strength. This problem is serious
because of the large dynamic range of the amplifier. A signal that is
several volts at the input terminal is repeatedly amplified and limited
throughout the amplifier, thus the signal appearing at the output ter-
minals is only that portion of the input pulse below the saturation level
of the amplifier, i.e., about one-millionth of the original signal, amplified
up to saturation level. The width of the output pulse is therefore the
width of the input pulse measured at a point 120 db down. Therefore,
any slope in the trailing edge of the pulse due to shunt capacitance, as
shown in Fig. 3-23, results in stretching of a strong pulse after repeated
amplification and limiting.

Pulse stretching can very easily be analyzed quantitatively if a few
simplifying assumptions are made. Consider a pulse, such as that shown
in Fig. 3-23, consisting of an exponential rise followed by an exponential
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decay, as might occur if a rectangular pulse were distorted by the presence
of shunt capacitance in a single circuit, e.g., the amplifier input circuit.
Assume that this pulse is applied to an extremely wide-band amplifier,
which has a negligible effect on the slopes of the leading and trailing edges
of the pulse and merely amplifies and limits the signal. The output signal
of this amplifier is then applied to a device measuring the length of
the pulse at the level corresponding to the amplitude of the minimum
usable signal, so that the portion of the signal above the minimum usable
level is of no interest. Since the amplifier does not distort the portion of
the pulse below this level, the apparent pulse length at the output ter-
minals is equal to the length of the pulse at the input terminals, measured
at the minimum usable level. The pulse therefore appears to be longer
than its true length by an amount equal to the time required for the pulse
to decay from full amplitude to the minimum usable level.

Since the decay is exponential, the expression for the signal voltage
during the decay is given by

3

es = Eee T, (30)

where T is the time constant of the circuit, and E, is the pulse amplitude.
This equation can be reduced to

Ea
20 logm—c: B @ _ 53 -
t T e
where b is the 3-db video bandwidth of an RC-circuit having a time con-
stant T, b therefore being equal to 1/2xT.

If e,istaken as the minimum usable signal, the quantity 20 log,o (E./e.)
is the signal amplitude expressed in decibels above the minimum usable
level. Equation (31) shows that the ratio of this quantity to the pulse
stretching caused by this signal is, for a given single-stage RC-coupled
amplifier, a constant independent of the signal strength, depending only
on the bandwidth of the amplifier. The ratio, expressed in decibels per
microsecond, is often used to specify the pulse stretching for an amplifier.!

In an actual amplifier, the simplifying assumptions may not hold.
The circuits within the amplifier may lengthen the decay time. Since
limiting occurs between stages, using the over-all bandwidth of the ampli-
fier as b in Eq. (31) does not give the correct result. The effects of each
circuit cannot be considered individually, because the amount of pulse
stretching produced by several circuits is not the sum of the stretching

! When a square-law detector precedes the amplifier, as mentioned in Sec. 4-1, the
value of the pulse stretching in decibels per microseconds for the receiver, consisting
of the combination of detector and amplifier, is half that for the amplifier. In this
chapter it is the value for the amplifier alone that is considered.
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produced by the individual circuits. Thus the exact calculation of the
pulse stretching is somewhat complicated. However, the approximation
of Eq. (31) is often adequate if cautiously interpreted.

The obvious method of reducing pulse stretching is by decreasing the
rise time of the circuits causing it, i.e., increasing the bandwidth of the
stages causing the pulse stretching. This method involves a certain
sacrifice in gain per stage because the minimum shunt capacity is deter-
mined by the wiring and tube interelectrode capacitances, and the only
method of reducing the rise time is therefore the reduction of the load
resistors with consequent loss of gain.

Another possible method of reducing pulse stretching is by introduc-
tion of an overshoot early in the amplifier before appreciable limiting
takes place. This method has the

effect of making the signal cross h

the baseline at a definite point, V

as shown in Fig. 3-31, instead of

approaching the baseline asymp- (@)

totically, as in the previous case.
This means that the maximum
amount of pulse stretching that

JA\

a\b_—" ®

Fra. 3-31.—S8tretching limited by over- Fic. 3-32,—Effect of integration on long
shoot. overshoot.

ean occur in the amplifier is the distance ab in Fig. 3-31, regardless of the
amount of amplification and limiting following this point.

The use of pulse-length discrimination may in some cases impose a
restriction on permissible fractional overshoot. One type of circuit fre-
quently used in pulse-length discriminators is a limiter followed by an
integrating circuit, which gives an output proportional to the area of the
pulse which is, since the amplitude is limited, proportional to the pulse
length. If there is an overshoot of small peak amplitude but long dura-
tion present, its area may be sufficient to make it an appreciably large
signal after integration, as shown in Fig. 3-32. In this case, therefore,
precautions must be taken to ensure that long-time-constant overshoots
are negligible, not only before integration but after integration as well.

3.5. Small Amplifiers.—High-gain video amplifiers find considerable
application in portable and airborne equipment, where space, weight, and
power drain must be kept as low as possible. These requirements com-
pletely change the design of the amplifier. Circuits are chosen not only
for their performance but for their ability to make use of small components

- and to require a minimum of power.
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Types of Small Amplifiers—The various applications of small ampli-
fiers may be grouped into several general classes according to the power
available for the amplifier. There are applications where sufficient power
is available to meet the needs of any circuit chosen. The problem is then
merely the design of a lightweight, compact amplifier, using tubes with
a-c-operated heaters, operating at moderately high plate voltages and
currents.

There are applications where the available power supply limits the
plate current, the heater current, or both. In this case tubes with a-c
heaters are again used, but they may have to be types selected for low
heater drain, operated at lower plate current. It is quite possible that
this type of amplifier may use more tubes than one in which B-supply
current consumption is no consideration.

Where the only source of power is a storage battery or generator of 28
volts, it is advantageous to design an amplifier that does not require a
plate voltage higher than 28 volts, thus eliminating the need for dyna-
motors, vibrators, or similar equipment. Here the primary concern is to
obtain the desired gain and performance with a 28-volt B-supply, size
and heater power being of secondary importance. The B-supply current,
negligible in comparison with heater current, is of no concern.

For some portable applications, the only source of power available
is dry batteries. Since the operating time of such equipment is inversely
proportional to the power drain, it is important that the power drain be
kept as low as possible. Filament-type tubes must be used wherever
possible because of the enormous saving in power over tubes using indi-
rectly heated cathodes.

Choice of Tubes—In small amplifiers, the prime consideration in
choosing tubes and circuits is gain rather than gain-bandwidth product,
as in most other pulse amplifiers. The best tube is the one furnishing
the most gain for a given space or power requirement. In many applica-
tions, the only requirement on amplifier response is that the output
waveform indicate the presence of signals, and no other information
regarding the nature of such a signal is necessary. Thus very large dis-
tortion of the pulse is allowable.

From this point of view it becomes evident that triodes are generally
superior to pentodes for small amplifiers, despite the advantage of pen-
todes in having a higher amplification factor. In order to utilize the high
pentode amplification factor, high plate-load resistors must be used.
Their use produces a high d-¢ voltage drop across the load resistor, thus
necessitating the waste of considerable power and the use of high-wattage
load and decoupling resistors. The use of the choke-coupled circuit to
circumvent this problem introduces added complexity to the circuit and
increases its size by adding the chokes, which may well be larger than the
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tubes used. By choosing suitable compromise values, an amplifier in
which the gain per stage is higher than that obtainable with triodes can
still be built using pentodes without excessive power consumption. How-
ever, the use of twin-triode tubes makes possible a considerably higher
gain per envelope than that obtainable with pentodes. Furthermore, the
elimination of the screen-dropping resistor and bypass condenser may
allow a considerable saving in size, especially where miniature and sub-
miniature tubes are used, and the size of the amplifier may well be deter-
mined more by the number and size of the other components than by the
tubes. The screen-bypass condenser for the first tube in particular
presents a serious problem since it must be fairly large to ensure good
recovery.

The main disadvantage of triodes for normal pulse amplifier use,
namely, the Miller effect, is of little significance for this type of amplifier.
Although the grid-plate capacitance appears across the input terminals
multiplied by the gain of the stage, thus causing the input capacity of the
stage to be unusually high, this merely has the effect of reducing the
bandwidth, thereby slowing the pulse rise and fall time. With triodes
having low grid-plate capacitance, such as the 7F8 and 6J6, the rise time
is still fast enough for a 2-usec pulse to reach a flat top, so that the Miller
effect does not reduce the pulse gain. A reduction in pulse gain may
occur, however, for shorter pulses or with tubes such as the 68N7 and
6SL7 having higher grid-plate capacitances. The coupling condenser
must be kept considerably larger than the equivalent input capacitance,
since the two capacitances are effectively in series across the plate load
and act as a capacitance voltage divider. If the coupling condenser is
too small, a considerable portion of the signal is lost across it. There is,
therefore, a limitation on the shortest possible time constant that can be
used without loss of gain.

Choice of Circuit.—The choice of the circuit to be used for a small
amplifier depends upon the size and power requirements and the desired
recovery. Bruteforce prevention of grid current, with large time con-
stants for all circuits except one, is not suitable for a small amplifier
because of the large components required. Inverse-feedback pairs,
direct- or capacity-coupled, can be used for amplifiers using heater-
cathode type tubes, with a high-voltage plate supply. Because of the
absence of separate cathodes in filament-type tubes, direct coupling
cannot be used for them. Neither type of inverse feedback can be used
under low voltage conditions without excessive loss of gain. Thus, the
double short time constant is the only scheme outlined here usable for a
single overshoot amplifier having a low plate-supply voltage.

For multiple-overshoot amplifiers, straight RC-coupling is simplest
and best. Choke coupling can be used, but the advantages scarcely
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justify the added weight and size.

28-volt power supply, more stages
are necessary for a given gain than
with heater-cathode type tubes
operated with a high B-supply volt-
age, because the transconductance
of the latter is much higher.

For some special applications in
which a high B-supply voltage of
approximately 300 volts is available
but the allowable current drain is
low, a reduction of the current drain
by a factor of 2 can be achieved by
connecting the tubes in pairs in
series across the B-supply, as shown
in Fig. 3-33. For pulses, the pair
represents an ordinary pair of
amplifier stages, since the cathode
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F1a. 3-33.—Series-fed circuit.

of the second stage is effectively grounded by the large condenser C.
For direct current, the two tubes are in series across the B supply. Thus

|||-

F1a. 3-34.—8eries-fed direct-coupled inverse-feedback pairs.
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the voltage across each tube is half the B supply (150 volts, if the total is
300), which is still enough for good amplification, whereas the current
drawn from the supply for the two tubes is only the plate current of one
tube. This same idea can be extended to the direct-coupled inverse-feed-
back pair, as shown in Fig. 3-34.

The characteristics of the amplifier are not determined completely by
the circuit diagram. As has been discussed previously, stray capacitance
can play an important part in the pulse response of the amplifier. Even
more important in small amplifiers is the possibility of stray feedback,
which may have a peculiar effect on the pulse response of the amplifier; if
there is enough feedback, the result is oscillation. These effects can be
avoided by proper layout and by properly grounding all ground points.
Techniques for improving stability are discussed elsewhere in this series
in great detail.! Briefly, the following points must be considered: The
stages should be laid out in a line from input to output terminals; com-
mon ground points on the chassis should not be used for several stages,
heaters should be grounded to the chassis at points where there are no
other connections. These points will be illustrated in Sec. 3-6.

3.6. Examples.—In this section, six amplifiers are described; these
present a good cross section of the types of amplifiers that can be used,
For convenience they are numbered from one to six and are referred to
by number. A summary of the characteristics of these amplifiers is
given in Table 3-4, which specifies the fidelity with which the pulse is
reproduced, the recovery time for full sensitivity after a 1-volt signal, the

TABLE 3:2.—SUMMARY OF AMPLIFIER CHARACTERISTICS

. No. of
No. | Fidelity Approximate over~ Circuit O})tp?t' Tubes used P(n?'el‘ Size
recovery, psec circuit required
shoots

1 Good 15 Single Brute Simple }Large pen- | Considerable | Large
force todes

2 | Fair 30 Single Direct- Multivi- | Submin. A-c heater low) Tiny
coupled brator triodes B drain
pairs '

3 | Fair 30 Single Double Choke Loktal twin- | 28 volts Small
short triode
time con-
stant

4 | Poor 100 Multiple | Straight Special Loktal twin- | 28 volts Small
RC 28 volts | triode

5 Poor 100 Multiple | Choke Smearer | Miniature A-c heater low| Small
coupled pentode B drain

6 Poor 100 Multiple { Straight Multivi- | Miniature Batteries Small
RC brator twin-

triode fila-
ment type

» Cf. Chap. 8.
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number of overshoots, the type of circuit used, the type of output circuit
used, the. general class of tubes used, the power requirements, and the
relative size.

Amplifier 1.—Figures 3-35 to 3-38 show a high-gain video amplifier
using the brute-force single-overshoot circuit, consisting of six stages,
three 6AC7’s and three 6AG7’s. The amplifier! is designed for negative
pulses of about 2 usec, and holds pulse stretching? to 120 db/usec.

The stages of the amplifier are designed in pairs, a typical one of which
is shown in Fig. 3-35. In order to drive the 6AG7 into grid current, the
grid voltage must rise above the cathode potential. At zero grid bias the
plate current of the 6AG7, as operated in this amplifier, is about 64 ma.

122 ma

|

8+

Fia. 3-35.—Typical pair of stages for amplifier No. 1.

Adding to this the zero-signal screen current of 6 ma, there is a total of
70 ma flowing through the cathode resistor during a pulse that barely
drives the amplifier into grid current. The cathode voltage is therefore
0.070 X 160 = 11.2 volts. If no grid current is to be drawn, the signal
on the grid of this tube must therefore be limited to less than 11.2 volts.
The limited output voltage of the 6AC71s0.010 X 1100 = 11 volts, which
is less than 11.2 volts and therefore does not drive the 6AG7 into grid
current. In the circuit diagram of Fig. 3-36 the values are slightly differ-
ent and indicate on the basis of the previous calculation that grid current
will occur. Actually, there are some discrepancies in the tube char-
acteristics, which make the circuit of Fig. 3:36 practical without the draw-
ing of grid current.

The time constants of all circuits are long except for that of the cou-
pling circuit between the fourth and fifth stages, which is made short to

1 M. F. Crouch, “The Design of High-gain Video Amplifiers for Pulse Recep-
tion,” Radiation Laboratory Internal Group Report 61-7/14/43, pp. 29-31.

260 db/usec for a receiver consisting of a square-law detector preceding an ampli-
fier of this type.
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introduce a single overshoot and to reduce microphonics. Because the
application requires that there be a sag of not more than 20 per cent in a
2-usec pulse, a time constant of 10 usec is used for this circuit. Since the
signal on this grid is negative, the overshoot produced drives the tube
into grid current, thus shortening the time constant of recovery for this
circuit.

Cathodes are left unbypassed, except for the small condensers used for
high-frequency peaking in the second and fourth stages. The screen
bypass condensers are returned to the cathodes rather than to ground so
that the signal component of the screen current may not flow through the
cathode resistor and produce added degeneration. The degeneration is
kept as low as possible by the use of small cathode resistors.

Fia. 3:37.—Layout of amplifier No, 1.

To ensure that the pulse stretching be held to 120 db/usec, the band:
width of the amplifier, according to Eq. (31), must be about 2 Mc/sec,
which is the actual case.

The layout of the amplifier is straightforward and is shown clearly
in Fig. 3-37. The row of condensers nearer the tubes are the screen bypass
condensers, the others being decoupling condensers.  Of particular impor-
tance are the ground connections. There are three ground points for
each tube, connected to pins 1, 2, and 3 of the tubes. For the 6AC7 these
correspond to the shell, heater, and suppressor. For the 6AGT7 these are
the shell and suppressor, heater, and internal shield. In general, to
ensure stability all circuit grounds should be ¢onnected to the suppressor
pin and none to the heater. In this case, it has been found permissible
to violate this principle to a small extent by returning the cathode circuit
to the heater pin. Any further violation of this principle will definitely
cause trouble. In the form of Fig. 3-37 the amplifier is stable with a small
cover over the circuits of the first tube and the remainder of the amplifier
open. For convenience, a cover fitting the entire amplifier is used.
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To reduce microphonics the first tube is shock-mounted. The leads to
this tube, as shown in Fig. 3-37, are not connected to the socket itself but
to tie points mounted on a bakelite ring, which are connected by flexible
leads to the shock-mounted tube.

The amplifier requires an electronically regulated power supply fur-
nishing 120 ma at 300 volts. Filtering in the heater line is necessary to
prevent transients on the power line from being picked up within the
amplifier and being amplified as signals.

Figure 3-38 shows the top view of the chassis of this amplifier, showing
the large condensers used for screen bypass and decoupling.

Amplifier 2—Figures 3:39 to 3-41 show a small amplifier made of
subminiature tubes in a circuit of direct-coupled inverse-feedback pairs

Fie. 3-38.—Amplifier No. 1.

with a multivibrator output circuit. The inverse-feedback pairs are
designed as described in Sec. 3-3. The last two tubes form a multivibrator
which is triggered by the negative signal appearing on the grid. The
short time constant for the elimination of long overshoots and low-fre-
quency interference is the 1-usec coupling time constant in the multi-
vibrator, determined by 50 uuf and 20,000 ohms. In addition, the time
constant in the grid circuit of the first tube of the multivibrator is shorter
than is apparent, since the 1-megohm grid resistor is shunted by the
conductance of the grid, which is normally positive.

Overshoots from other sources are minimized by the use of direct
coupling to the positively driven stages and of long time constants in the
negatively driven stages. Decoupling has been eliminated, as the ampli-
fier is quite stable if the B-supply impedance is low. This low impedance
. can generally be achieved by using a condenser of moderate size (between
0.1 and 1 uf) across the supply. The cireuit diagram for this amplifier is
shown in Fig. 3-39,
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The unique feature of this amplifier is the small size obtained by the
use of subminiature tubes. The details of layout and construction are
shown in Figs. 3-40 and 3-41. The tube clamps are mounted on a bake-
lite strip, along with turret lugs, which are used for all connections. Slots
are put into the strip to allow for the mounting of the postage-stamp-

Quiput

5.6k

Fi16. 3-39.—Circuit diagram of amplifier No. 2.

size 0.01-xf condensers. The power leads are strips of copper foil run-
ning along the back side of the strip, as shown in Fig. 3-40q, the upper strip
being the B bus and the bottom strip being the heater bus. This arrange-
ment serves the purpose of keeping the power leads close to the chassis,
out of the way, and avoids congestion of leads. The strips are distant
from circuit components and, having high capacity to ground and low

e

FrG. 3-40¢.—Back of mounting strip. F1a. 3-40b.—Front of mounting strip.

inductance, are not so likely to cause feedback trouble as are ordinary
wire leads.

"The strip is mounted in the chassis, a similar bakelite strip being used
to insulate the copper strips from the chassis. All connections are made
to the turret-lug terminals on the strip, except for ground eonnections,
which are made to turret lugs mounted directly into the chassis below the
strip. There is 8 separate ground lug for each stage, plus other ground
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lugs where the heaters are grounded. Some lugs serve as grounds for two
heaters; others for one, depending upon convenience, but no lug is used
both for heaters and for other circuits. With the precaution of separate

Fig. 3-42.—Amplifier No. 3.

grounds and the copper strip as the heater lead, there is no need for further
filtering of the heater current.

Amplifier 3.—Figure 3-42 shows an amplifier circuit that operates
from a 28-volt supply. Because the double-short-time-constant circuit
is used, there is only a single overshoot. The type 7F8 twin triode is used
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for all stages except the output and performs quite well with a plate sup.
ply of only 28 volts, although the gain per stage is naturally not so high as
it would be with a higher plate voltage. Six stages of amplification are
required before the output stage.

The amplifier is designed for a negative input signal. The two short
time constants are in the fourth and sixth grid circuits, with all other
time constants made very long. The time constant in the sixth grid eir-
cuit is short when grid current is drawn but increases to 16 usec during the
overshoot. (For strong signals triodes 3 and 5 are cut off, and their plate
resistance is then infinite.) The time constant in the fourth stage is about
2 usec. Thus, in Eq. (19), Ty is 2 usec, T is 13.5 usec, and T’y is very
short. This circuit clearly meets the condition for no secondary over-
shoot, namely, that Ty be greater than the sum of Ty, and Ty, with a con-
siderable factor of safety.

2 St 4 S Muiti Cathod:
~ Input ages tages Multi- . athode
2 e four  [-m—eqp ,Vibrator Driver L __ | follower |—a—

) ™11
y, 7F8's Y, 7F8's i % 2807 2807

+input | 1stage
1, 7F8

Fic. 3-43.—Block diagram of amplifier No. 4.

The recovery of the amplifier after strong signals is therefore gov-
erned by the 16-usec time constant. Since this coupling circuit occurs in
the sixth stage after considerable limiting has taken place, the recovery is
acceptable for most applications.

The overload problem in general is not so severe in 28-volt amplifiers
as in those having a high plate voltage. Since the maximum possible
signal that can appear upon any plate is about 10 volts instead of 100,
an improvement of 20 db is automatically present.

The output circuit used is the one previously described in Sec. 3-4.
The tube used is the twin pentode 28D7, which can draw a fairly heavy
current with only 28 volts on the plate and screen.

The layout of this amplifier is not shown but is quite straightforward.
The tubes are laid out in a line from input to output. The general
placement of components is similar to that of Amplifier No. 4, as illus-
trated in Fig. 3-45b, except that the added complications of folding the
strip back on itself and of using twin input circuits are not necessary.

Amplifier 4.—The amplifier shown in Figs. 3-43 to 3-45 is also designed
to operate from a 28-volt power supply. The special requirement for
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this amplifier is that signals from either of two input channels, with
opposite signs of input signal, cause the amplifier to furnish a 12-volt
trigger into a 95-ohm cable. The exact nature of this amplifier can be
understood from the block diagram of Fig. 3-43. In order to get the
necessary relative inversion, the two input channels are mixed after one
stage of amplification for the positive signal and two stages for the nega-
tive. This mixing stage is followed by four stages of amplification and a
multivibrator. In parallel with the normally conducting tube of the
multivibrator, except for the plate circuit, is a driver stage using the
high-voltage output circuit described in Sec. 3-4. The large output pulse
is used to drive a cathode-follower output stage. Considerable output is
obtained by use of type 28D7 twin-beam power-amplifier tubes as the
driver and the cathode follower. The 7F8 twin triode, although not
designed for 28-volt operation, performs well as an amplifier under this
condition and is used for all stages except the output.

The circuit shown in Fig. 3-44 is one of straight RC-coupling with
multiple overshoot. The time constants are chosen to make the recovery
as rapid as possible. Short time constants are introduced into the ampli-
fier as late as possible, so that the signal is limited before reaching these
circuits and produces smaller overshoots. However, it is important that
long overshoots do not reach sufficient amplitude to drive tubes into grid
current. Hence, the short time constants are used in the coupling circuits
of the first negatively driven stages, where the long positive overshoot
would drive into grid current.

The time constants in the early stages are all made long. The problem
of grid current is disregarded in the first positively driven stage (the
maximum possible signal is still so small that any overshoot produced by
grid current is made negligible by the short time constants following).
The following stage, however, although negatively driven, is driven into
grid current by the long overshoot. Since this would produce an
extremely long paralysis of the amplifier, a short time constant is used for
coupling at this point. The next stage is driven into grid current by the
signal; hence the grid resistor is made approximately equal to the plate
resistor to prevent a long recovery. The coupling condenser is made as
large as possible (0.01 uf) to reduce the amplitude of the overshoot pro-
duced here to a minimum. At the output of this stage, the long over-
shoot has been amplified to a level where it is again troublesome, and
another short-time-constant coupling is inserted. The time constant of
coupling into the multivibrator is long, but the grid resistor is kept low
because the requirements of the multivibrator, which is a straightforward
circuit. All decoupling-circuit time constants are large; thus there are
only two short time constants in the circuit.

The layout of this amplifier presents a peculiar problem because the
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space requirements do not permit the use of a narrow strip. The lay-
out as shown in Fig. 3-45 solves the problem.

Figure 3-45a is 2 diagram showing the pin numbers of the tubes and
numbering them for identification, and Fig. 3-45b is a photograph of the

2
1
l

\4 V. V.
e i S /% 5 I
3
7a b2 3a.lz a b
6 3 2 2 7
5 4 18 1 g

F1G. 3-45b.—Photograph of layout of amplifier No. 4.

layout. The functions of the tubes, as numbered in Fig. 3-45a are as
follows:

Triodes Vi, and Vi, are the first two stages of amplification in the
negative signal channel, the input lead coming in from a connector on
top of the chassis, located at the center of Tubes V1, V3, V3, and V. This
connector is obscured by the parts covering it, but the input coupling
condenser can be seen running alongside Tube V,, next to the large decou-
pling condenser.
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Triode V' is the input stage for the positive signal channel, the input
connector being clearly visible on the front panel in front of Tube V.

The two channels are mixed at the plate of V4,, and the following four
stages of amplification are Triodes Va, Vi, Vi, and V..

Beam-power Tube V;, and Triode Vg form the multivibrator, Vi,
being the normally conducting tube; Tube Vy is the driver, and Tube 6,
both halves connected in parallel, is the cathode follower.

The input and high-level amplifier stages are at opposite corners of
the amplifier. Although the output stage is next to the input, the feed-
back loop is broken by the normally nonconducting half of the multi-
vibrator. Therefore, there is no transmission of signal around the loop,

+300v

éSGOk

Output
—————r

_{ooo01

6.3v
Fic. 3-46.—Amplifier No. 5.

except immediately after a signal, when the recovery time of the multi-
vibrator prevents continuous ring-around. Stray feedback is reduced still
more by the 0.05-uf decoupling condensers, which, standing on their sides,
act as interstage shields, since they are at ground potential for pulses.
One difficulty encountered when 28D7 tubes are used is their heater
power requirement of 11.2 watts. This requirement means that unless
proper precautions are taken, there will be a considerable temperature rise
in any equipment using these tubes. With the amplifier enclosed in a
metal box with no ventilation, the temperature at points in the chassis
rises to above 90°C. The maximum temperature can be reduced by
providing for ventilation by making holes in the box and installing a fan.
Amplifier 5—Figure 3-46 shows the circuit diagram of an amplifier
using miniature pentodes with the choke-coupled circuit. This amplifier
was designed to get the most gain from the fewest tubes with a recovery
time of 100 psec. For this reason the 6AKS5-pentode choke-coupled
circuit was chosen. For most purposes, this amplifier is inferior to one
that could be designed using twin triodes, such as the miniature 6J6 or the
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loktal 7F8. This is because the twin triodes, even with less gain per
stage, permit more gain per envelope and also permit elimination of the
chokes, which in this case occupy more space than the tubes. Further-
more, the power consumption of the triodes can be reduced, with a reason-
able gain being maintained, by using high load resistors.

The chokes chosen for this amplifier, 85 mh, represent the largest
readily available air-core chokes. The coupling condensers are not eriti-
cal so long as the circuit is more than critically damped. The load
resistors are chosen to give a gain of 40 db per stage, so that the over-all
gain is about 120 db.

To keep the amplifier stable, extreme care is required in layout and
grounding, because of the high gain in so small a space. To avoid

10k 10k
689 150 k 689
Hp 1 S50k Tﬂ# 150k <150k
0.0022 0.01 270nut | 270uut
E_
P AN S JEUE SO,
3A5 3A5
470 k §12 100k <27 100 &
470k 27 33k ;\3 27 §33k 0 ™ 00
] *
507 63v
pauf -40v -105v
T
L\ﬂl
5 mh

Fig. 3-47.—Amplifier No. 6.

instability, a small condenser (100 uuf) is necessary to bypass the screen
of the first tube to its cathode directly at the tube socket. The heaters
must be grounded properly, and heater chokes are required.

To remove the necessary overshoot in the output of the third ampli-
fier stage, a smearer is used. Any triode is suitable for the purpose.
In this case a 6SL7 is used, simply because the other half of the tube is in
use elsewhere in the equipment.

Amplifier 6.—Figure 3-47 shows the circuit diagram of an amplifier
designed to operate from a battery supply for portable use. In this type
of application, an enormous saving in heater power is realized by use of
filament-type tubes, such as the 3A5 twin triode and the 114 pentode.
Because there is no cathode in these tubes to isolate the filament supply
from the signal path, the filament circuit is much more critical than it is in
amplifiers using tubes with indirectly heated cathodes.

Because the filament carries signal current, the filtering of the filament
circuit is very critical. A large condenser, about 25 uf, is generally
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necessary across the filament of the first tube in order to ensure stability.
With proper care in layout and grounding and separate filament-voltage
dropping resistors for each stage, the 25-uf filament condenser should be
sufficient for stability. However, the 25-uf condenser alone would not
be sufficient to eliminate low-frequency interference that could enter the
amplifier through the filament cireuit if a vibrator or dynamotor were
used. For this purpose a series iron-core choke of low d-¢ resistance
would be required.

Except for the filament circuit, the amplifier is quite straightforward,
up to the multivibrator. Since there are two short 9-usec time constants
in the latter stages, the long time constants in the first few stages need
not be very long. Thus the time constant between the first two stages is
about 1000 usec, and that between the second and third is about the same,
depending upon the signal level that determines the plate resistance.
The amplifier is designed for a positive input signal; hence the input
to the third stage is positive, and the grid resistor must be less than the
plate resistor to prevent blocking by grid current. To make the time
constant sufficiently large a condenser larger than that between the first
two stages is required at this point. The next two stages have short
time constants, 9 usec, and low grid resistors, to prevent blocking by
grid current.

The sixth stage is the conducting half of a multivibrator, triggered
by the negative input signal. This stage is d-c coupled to the normally
nonconducting tube of the multivibrator. Because of the very wide
variation in the cutoff characteristics of the 3A5 tube, a 114 is used
triode-connected, with its bias set by the 100k potentiometer in the grid
circuit. This controls the firing level of the multivibrator and is generally
set so that the triggering by noise is sufficiently infrequent.

Multivibrator operation is not so reliable when using these filament-
type tubes as it is for heater-type tubes. In particular, all impedances
when the tubes are conducting are considerably higher than for corre-
sponding heater-type tubes. Also, because of the absence of cathodes,
cathode coupling is impossible. For this reason, d-c¢ coupling is necessary
in the multivibrator to ensure good recovery. In addition an extra tube
is necessary to prevent overshoots and extraneous signals from turning
the gate off too soon. This prevention of overshoots is accomplished by
connecting the plate of a tube to the plate of the stage that drives the
multivibrator. This tube is normally biased off but is d-c coupled to the
plate of the normally conducting stage of the multivibrator. When
the multivibrator fires, the positive gate is impressed upon this tube,
rendering it conducting. This loads the fifth amplifier stage heavily so
that no signals or overshoots pass this point during the duration of the
gate.



CHAPTER 4

SYNCHRONOUS AND STAGGERED SINGLE-TUNED
HIGH-FREQUENCY BANDPASS AMPLIFIERS

By HeNrRY WALLMAN

4-1, Introduction.—Typical of the wide-band bandpass amplifiers
to be discussed in Chaps. 4 to 8 of this volume are amplifiers 2 Mec/sec
wide at 30 Mc/sec of 110-db gain, 16 Mc/sec wide at 16 Mc/sec of 80-db
gain, and 20 Mec/sec wide at 200 Mc/sec of 100-db gain.

The design of amplifiers of this type poses two main problems:

1. The theory of the interstage coupling elements needed to achieve
such bandwidths and gains.
2. The practical questions of obtaining freedom from regeneration.

This chapter contains a detailed discussion of two schemes of inter-
stage coupling; other schemes are considered in Chaps. 5 and 6. Chapter
7 contains comparisons of the various amplifier-design methods and con-
siderations of transient response, and Chap. 8 discusses measurement and
alignment procedures, and means of avoiding regeneration.

Although Chap. 7 contains a fairly extended treatment of the repro-
duction of pulses of a carrier frequency, the questions principally analyzed
in Chaps. 4 to 6 are those involved in the design of amplifiers of large
steady-state bandwidths. The reasons for placing the main emphasis on
steady-state rather than transient-response considerations are the
following:

1. For a tube type of given g, and C, speed of response is cut in half when
one goes from a low-pass circuit to its centered bandpass analogue,
because of the double-sideband nature of carrier-frequency signals.
Thus when 6AKS5’s are used in a bandpass amplifier that uses a
single-tuned circuit (which is the bandpass analogue of RC-cou-
pling), the gain/rise time ratio is only 100/usec instead of 200/usec
as in the low-pass case (see Sec. 2-2).

2. The circuits that are practical in bandpass amplifiers have to
be much simpler and consequently less efficient than the bandpass
analogues of the high-speed, low-overshoot circuits of Chap. 2.
Thus the bandpass analogue of the four-terminal linear-phase net-

1 This chapter is based on Radiation Laboratory Report 524, ‘‘Stagger-tuned IF
Amplifiers,” Feb. 1944, by Henry Wallman.
166
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work (Fig. 1-26), although entirely possible in theory, is quite
unreasonable in practice, as Fig. 4-1 shows.

3. Because of reasons 1 and 2 and the g../C limitations of present tube
types, it is necessary in high-gain carrier-frequency pulse amplifiers
to accept fairly large overshoots (10 per cent or more) in order to
achieve rise times as short
as 1% wsec. Fortunately for
radar applications, such over-
shoots are tolerable.

4. With the variabi ity in tube
capacities permitted by the
present JAN specifications, ~ ,%/
the tuning changes caused by
replacing tubes make it point-

R

less to design a bandpass

interstage network for the T

utmost performance with re- Fic. 4-1.—Bandpass analogue of four-
ga,rd to small overshoot. terminal linear-phase network. Each of

the inductors (capacitors) has to be tuned
. . .. with its associated capacitor (inductor) to
[For applications requiring the desired band center.

carrier-frequency pulse amplifiers
having high gain (10% or more), fast rise time (% uwsec or less), and very
small overshoot (1 or 2 per cent), it will be necessary to have tube-types of
better g./C ratio than the type 6AKS5 and/or circuits accurately adjusted
to the capacities of the individual tubes in use.]

The Different Interstage-coupling Schemes.—The most common types
of interstage coupling methods are

1. Synchronous single-tuned.

2. Stagger-tuned.

3. Double-tuned (including stagger-damped).
4. Inverse feedback.

Each of these types has its advantages and disadvantages with
respect to

1. Efficiency, i.e., gain-bandwidth product.
2. Constructional simplicity.

3. Noncriticalness of adjustment.

4. Ease of gain control and gain stability.

These various characteristics will be examined for each of the types.

Roughly speaking it can be said that the synchronous single-tuned
scheme can be put in one class of maximum simplicity and minimum
efficiency, whereas the other types are in another class having greater
complication but also considerably greater efficiency.
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The coupling schemes to which this chapter is devoted are those
of the synchronous single-tuned amplifier and the stagger-tuned amplifier.

Double-tuned circuits are discussed in Chap. 5 and inverse feedback
in Chap. 6.

4-2. One Single-tuned Circuit. The Eguation.—If d-¢ returns are
neglected, the diagram of a single-
tuned amplifier stage is as shown in

T, Fig. 4.2, where C is the total circuit
) capacity (the output capacity of 7',
J_ plus the input capacity of 7, plus
P L% c the wiring capacity) and R is the
T total eircuit resistance (the parallel
: resistance of the load resistor, the
Fra. 4'2-‘“Aj:ml‘3]"i2iia;’t‘ag‘;f single-tuned  plate resistance of 7'y, the input re-
| sistance of 7Ty, and the equivalent

shunt loss resistance of L and (). The impedance is found to be

I

P70, R JO S— )
d+j (~f— - Jﬁ)
fo  f
where
fo = 1
"7 (2r vLO)

is the resonant frequency or band center and

is the dissipation factor (the reciprocal of the Q).
If the transconductance of 7', is g, the voltage gain from the grid of
T, to the grid of T is

G = gnR (2)
at band center and
gnZ(f) = guR-—— 3)
d+j (i - f—“)
Jo S

as a function of frequency. The gain is 3 maximum at band center, and
this maximum gain will be denoted by g.

Geometric Symmetry.—The complex function in Eq. (1) displays
‘“geometric symmetry”’; i.e., for any two frequencies f and f2/f having
fo as their geometric mean, the absolute values are equal and the nhase
angles opposite in sign.
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Bandwidth.—Throughout Chaps. 4 to 8 of this book, ‘“bandwidth’ is
denoted by ® and means full 3-db bandwidth, i.e., the bandwidth included
between the left and right half-power or 0.707-voltage points.

The reasons for this choice of 3-db bandwidth are first that the
mathematics is easier and second that the noise bandwidth! is, except for
a single single-tuned stage, quite accurately equal to the 3-db bandwidth.?

From Eq. (1) it follows that a 3-db point f =  occurs where

I fe

fo 77 4,
or, substituting d = 1/(2rf,RC), where

B_ 1
f—?_%rRC.

Because of the geometric symmetry about f; the other 3-db point is
f3/f; hence the bandwidth is
1
® = 27RC” 4)

Thus, the bandwidth of the circuit of Fig. 4-2 is independent of the center
frequency.
Another consequence of Eq. (4) is

d _ bandwidth _ &
" band center  f,

(5)
Approximate Form; Arithmetic Symmetry—One may write

I _h_ P =D _ GG =),

fo  J Jfo Ifa

t The noise bandwidth of an amplifier, the B in the noise power formula kT B, is
the width of an idealized bandpass filter having the same total area as that under the
power-vs.-frequency curve of the amplifier and having the same peak value. For
synchronous single-tuned amplifiers the ratio of noise bandwidth to 3-db bandwidth is

1.57,1.122, 1.155, 1,13, 1.11,1.10, . . . ,1.06,for 1,2, 3,4,5,6, . . . , « stages, and
for a single staggered n-uple (1/4/(1 + z») voltage curve) the ratio is 1.11, 1.05,
1.025,1.02,101, . . . ,1.00forn = 2,3,4,5,6, . . . , .

2In addition there is the following fact about transient response and bandwidth:
For a large variety of common coupling arrangements, e.g. one, two, or infinitely many
synchronous single-tuned circuits, one or two transitionally coupled double-tuned
circuits, a transitionally coupled triple-tuned circuit, ete., the rise time is very closely
a certain fixed constant (namely, 0.7) times the reciprocal of the 3-db bandwidth.
Rise time here denotes the time for the step-function response to go from 10 to 90 per
cent of its steady-state value (see Fig. 7-7).
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Now for values of f close to fo it is approximately true that (f + fo)/f = 2;
hence

f_fo ~ 9 =T,

fo fo
For circuits whose bandwidth is small compared with the resonant
frequency, i.e., low-dissipation circuits, a good approximation to the right
side of Eq. (1) is therefore

L
o f—fo
d+_72-——f

0

R

or, using Eq. (5),
3®
Z =~ R y——75—=" 6
D= R i ©
In contrast to the right side of Eq. (1), Expression (6) displays
“arithmetic symmetry,” ie., for any two frequencies f and 2f, — f

Az

R <+——— Exact form: absolute value of Eq. (1)

Approximate form: absolute
/ vafue of Eq. (6)

a4 S R BN
~ © g

~

Fia. 4-3.—Resonance curve of single-tuned circuit.

having fo as their arithmetic mean the absolute values are equal and the
phase angles opposite in sign (see Fig. 4-3).
It is true of the approximation in Expression (6), as of the exact
form in Eq. (1), that
1
® = 2rRC’

The exact form of Eq. (1) would, of course, show arithmetic sym-
metry if plotted on a logarithmic frequency scale.

Denoting f — fo in Expression (6) by z, so that x represents frequency
off resonance, Expression (6) is proportional to

1@ \
&+ @
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Taking ® = 2 yields the normalized selectivity function of a single-tuned
circuit
1
1+ j.r’
whose absolute value
1

V14 x?
is shown in Fig. 4-4.

4-3. Amplifier Figures of Merit. Gain-bandwidth (G®) Product for a
Single Stage.—The evident figure of merit for a one-stage amplifier is the

Relative voltage

0.707

-1 0 +1 Frequency off
resonance

F1a. 4-4.—Normalized resonance curve of single-tuned circuit; arithmetic symmetry.

product of voltage gain at band center by bandwidth.! For any given
circuit configuration it is always possible to increase the bandwidth at the
cost of a proportionate reduction in gain, thereby preserving the product
of gain and bandwidth. This fact follows from the impedance-level
transformation applied to the given circuit, which consists of multiplying
the value of each of its resistances by a factor k, leaving the capacity
values unaltered, and multiplying the value of each inductance by k2.
It is not hard to see that the impedance at any frequency f is k times
the impedance of the original network at frequency kf; hence the gain
at each frequency is multiplied by k, and the bandwidth divided by k.

1 On a steady-state basis; on a transient basis the appropriate criterion is gain/rise
time (see Chap. 2). Sometimes the amplifier designer is concerned with steady-state
behavior (wide-band amplifiers), sometimes with transient behavior (fast amplifiers).
Fortunately, as previously mentioned, for the more common interstage circuits the
product of bandwidth and rise time is approximately independent of the particular
coupling circuit employed. Rise time is, however, not the only index of transient
response; the percentage of overshoot is also very important. A full characterization
of transient response can be given only by a graph such as that of the step-function
response (see Fig. 7-7).
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G® Product and G® Factor for One Single-tuned Stage.—From Egs. (2)
and (4) it follows that the gain-bandwidth product for one single-tuned
stage is!

6B = 5= (8)

In order to focus attention on the circuit rather than on the tube the
G¢® product will be normalized by expressing it in units of g.,/(2xC); so
normalized this quantity will be called the G® “factor.” Thus, Eq. (8)
is equivalent to the statement for one single-tuned stage that

S® factor = 1. 9

G® Product for Mult stage Amplifiers—When dealing with an n-stage
amplifier, the appropriate figure of merit is not over-all gain? times
over-all bandwidth, but rather

(Over-all gain)V» X over-all bandwidth.

As before, one can show that for a given scheme of interstage coupling
this product is constant, whether the over-all bandwidth is large or small.

The following notation will therefore be adopted: whenever one
speaks of the ““G® product” of an n-stage amplifier, the g will denote
the nth root of the over-all gain and the ® will denote the over-all band-
width. Further, the “G® factor” will mean the G® product expressed
in units of g./2rC.

It is sometimes convenient to give the name “mean stage gain” to
the nth root of over-all gain.

4-4. Cascaded Synchronous Single-tuned Circuits.—The G® Factor for
Synchronous Single-tuned Amplifiers.—If n identical single-tuned stages
with selectivity functions 1/(1 + jz) (see Fig. 4-4) are cascaded, the

over-all selectivity function is
1 n
(1 + jx) (10)

because of the isolating action of the tubes, and the over-all bandwidth,
derived by setting the absolute value of Expression (10) equal to 1/4/2, is

Over-all bandwidth = one-stage bandwidth X +/(2v* — 1).
For » > 1 a good approximation to 27 — 1 is (In 2)/n, from the power

series expansion of 2*; moreover 1/4/In 2 = 1.2 very closely; hence

! Note that Eq. (8) is independent of frequency; for a given gain it is no easier to
get a wide bandwidth at a high frequency than at a low.
2 “Gain’’ always means voltage gain at the center of the over-all pass band.
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one may write

Over-all bandwidth = one-stage ba_n dwidth (approx.).
1.2vn

Therefore, for an amplifier of cascaded synchronous single-tuned cireuits,
1

& factor = ——~= approx.). 11

S 12 v/n (approx.) (11)

Equation (11) approaches zero as n increases, and the rapidity with
which it approaches zero represents the principal weakness of syn-
chronous single tuning,.

TABLE 4-1—SHRINKING OF OVER~ALL BANDWIDTH IN A SYNCHRONO /S SINGLE-TUNED

AMPLIFIER
n | A/(2V» — 1) (exact) L (approx.)
1.2 vn

1 1.00

2 0.64 0.59
3 0.51 0.48
4 0.44 0.42
5 0.39 0.37
6 0.35 0.34
7 0.32 0.32
8 0.30 0.29
9 0.28 0.28

Table 4:1 shows, for example, that if a nine-stage synchronous single-
tuned amplifier is to have an over-all bandwidth of 4 Mc/sec, then each
individual stage must be 4/0.28 = 14.3 Me¢/sec wide. Further, assuming
gn/27C = 57.3 Mc/sec, as for 6ACT’s with g, = 9000 pmhos and
C = 25 puf, the G® product is, from Eq. (11), only

16 Mec/sec = 0.28 X 57.3 Mc/sec;

hence the stage gain is only 4.

Mazimum Bandwidih Possible at a Given Over-all Gain. —The circum-
stance that the G® factor tends to zero implies that there is a maximum
bandwidth for cascaded amplifiers of a given over-all gair and employing
a given tube type no matter how many stages are permitted.!

For synchronous single-tuned stages the maximum bandwidth oceurs
when the gain per stage is v/e (= 4.34 db), and the use of any larger
number of stages yields only a smaller over-all bandwidth. This state-

1 This theorem appears to have been first noted by Alan Hazeltine, ““ Discussion on
“The Shielded Neutrodyne Receiver,’ by Dreyer and Manson,” Proc. I.R.E., 14, 395~
412, (1926), particularly p. 406. The author is indebted to Mr. H. A. Wheeler for
this reference.
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ment is proved as follows: Denote by ¢ the required over-all gain, so
that for an n-stage cascaded amplifier the stage gain is G¥; denote by
®(n) the over-all bandwidth of the n-stage amplifier; the problem is to
find the value of n maximizing ®(n).

From Eq. (11) one has

gm 1
un@(n) = -Im
§rem) = 12

(12)

or

-3

.
22C 1.2 v/n gv/»

Setting (d/dn)®B{(n) = 0 shows that &(n) is a maximum for n = 21n g,
or G = 4/¢ = 4.34 db, completing the proof.

Unfortunately, the limitation on over-all bandwidth represented
by this theorem is hy no means an academic one; for present tubes the
maximum possible bandwidth often turns out to be considerably less
than is needed. Consider, for example, a synchronous single-tuned
100-db amplifier. The maximum bandwidth occurs with 23 stages
(100 db/4.3 db). The €® factor is 1/(1.2v/23) = 0.174. If 6ACT's
are used and if ¢.,./2xC is assumed to be equal to 57.3 Me¢/sec, the g®
product is 10 Me/sec for 23 stages. Since the stage gain is v/e = 1.65,
the over-all bandwidth is only 6 Mc/see, which is entirely inadequate for
many purposes. (It is worth repeating that the use of any number of
stages greater than 23 would only reduce the over-all bandwidth.)

4.56. Example of a Synchronous Single-tuned Amplifier. S:iz-stage
110-db 6 AC7 Synchronous Single-tuned Amplifier Centered at 30 Mc/Sec.—
For bandwidths a third or less of the maximum bandwidth possible with
synchronous single-tuned circuits, the use of such circuits is not too
uneconomical, and in such cases this method has been widely employed,
principally because of its simplicity. The following is a typical example:

If an interstage capacity of 25 uuf and, to be conservative, a 6AC7
transconductance of 8000 umhos are assumed, the ratio g./2xC is
51 Me/see.

The stage gain is % = 18.3 db or 8.25; the bandwidth per stage is
therefore 6.17 Mc/sec (51/8.25). The over-all bandwidth is then,
according to Table 4-1, 2.16 Me/sec (6.17 X 0.35).

The individual interstages have the a-¢ diagram of Fig. 4.2 where
C = 25 uuf, L is chosen to resonate with C at 30 Mc/sec (hence
L = 1.13 ph), and' R = 1030 ohms as follows from either

Stage gain = g.R = 825

®(n) =

or

Stage bandwidth = 3 L 6.17 Mc/sec.

rRC
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Practical Embodiment.—The circuit of an actual amplifier of this sort,
designed by P. R. Bell, is shown in Fig. 4-5, and a photograph is shown

250 v
tooor VWV J_
250 0001 $250 250
L, 12k
\
6AC7

)
T8

AR Gain
control]

250 250 250

To V,

All resistors are  w

unless otherwise
specified

Y, V. and ¥ V; are
paired and wired the
sameas V| V,

RFC

Fi1g. 4-5—Circuit diagram of 6-stage 110-db 6AC7 synchronous single-tuned amplifier
centered at 30 Me/sec,

in Fig. 4-6. The coils marked L, in Fig. 4-5 are self-resonant chokes at
30 Mec/sec, wound on the load resistors, and are used to keep the plate
voltage as high as the screen voltage.
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Photograph of 6-stage 110-db 8AC7 synchronous single-tuned amplifier centered at 30 Mc/sec.

The tuning coils are tuned by copper
plugs that can be moved into the field of the
coils, thereby reducing their inductances.
The alignment of such amplifiers can be
carried out by tuning the individual coils
80 a8 to give maximum second-detector out-
put signal when a 30 Mc/sec sine-wave signal
is supplied to the input circuit. To assure
that there are no gross errors, such as an
incorrect damping resistor, it is, however,
advisable to explore the amplifier pass band
with a frequency-modulated signal generator,
as described in Chap. 8.

4-6. Staggered n-uples. Arithmetic
Symmetry.—In this section single-tuned
circuits will be considered, in the approxi-
mation of Seec. 42, to have arithmetic
symmetry. The exact case of geometric
symmetry will be taken up in Sec. 4-7.

Definition, Advantages, and Disadvantages
of a Staggered n-uple—The goal of this sec-
tion is to demonstrate that

(1) it is possible to stagger the tuning of
n suitably damped single-tuned stages
s0 as to get a1/ /(1 + z**) selec-
tivity curve (such an arrangement is
called a flat-staggered n-uple!), as
depicted in the upper half of Fig. 7-7,
and

(2) the g® factor for a flat-staggered
n-uple is 1.2

It is important to have a clear picture of
the relative standing of points (1) and (2).
It is often thought that getting the ‘‘maxi-
mally flat” selectivity curve 1/4/(1 + 27
is a good thing in itself, ie., that there is

t Of bandwidth 2; other bandwidths are then
obtained trivially (see Table 4-2).

2 Another way of expressing (2) is this: A fiat-
staggered n-uple has as great an over-all bandwidth
as does just one single-tuned stage of the same stage
gain.
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something inherently desirable in a flat selectivity curve. Only under
extremely unusual conditions is this the case, however. If one is
concerned with steady-state considerations of covering a large range of
frequencies (‘““wide’”’ amplifiers), it would be better to have a gain char-
acteristic with small dips, covering a substantially wider band (see Sec.
7:6). If, on the other hand, transient considerations are controlling, as in
television (‘““fast” amplifiers), then the flat-topped curve is not ideal
because it leads to overshoots.

The only virtues of the 1/4/(1 &+ z%*) curve [point (1) above] are its
simple mathematical character and its easily recognized shape when
viewed on a cathode-ray tube with a swept-frequency generator; it is here
adopted only as a means to an end, the end being the high G® factor
[point (2})]. In a sense, a flat selectivity curve is the penalty for a good
G6@® factor.! A really useful accomplishment, from the point of view of
transient response, would be a stagger-tuning scheme with a good g®
factor and yet a rounded (Gaussian-error) over-all selectivity curve.

Complex Impedance Having 1/A/(1 + x*) as Its Absolute Value.—
The (minimum phase shift) complex impedance having 1/4/(1 + z?*) as
its absolute value will now be determined.

This procedure turns out to be very useful in the treatment of the
exact single-tuned circuit, and the complex impedance is needed in any
case for the determination of transient response in Chap. 7.

Factoring,? 1 4 z%* = 22» — (—1) =

[(@—e)(z?—&))[(x?— ) (z2—&)] - « - [(22—en,2) (22 —Epy2)], n eVeD,
[(z2—e) (22— )[(x? —ea) (x2—E2)] - - - [(2x2+1)], n odd,
where the e are the nth roots of —1 and overlining indicates complex conju-
gate. One now seeks complex expressions of the form (jz — &) (jz — &m)
whose absolute values squared are equal to the brackets of Eq. (13).
Equating coefficients of

[(Gr — xm) (2 —&m)]? = (2% + &n?) (22 + &n?) = 24 + (kn? + £n2)Z? + KnThm?
and (22 — €,)(2? — &m) = T* — (€m + &n)22 + €mémshows that k,2 = —ey, or

Km = (—em)}é! (14)

where in order to make the resulting impedances realizable, the value of
«m 18 selected that lies in the left half-plane. It then follows that the «,
are those of the 2nth roots of (—1)™*! that lie in the left half-plane.

! Fortunately the overshoot that goes with a 1/+4/(1 + z?*) curve is not too great
for moderate values of n, so that the penalty is not too severe; forn = 1,2, 3,4,5,6,7,
the percentage overshoots in the step-function responses are 0, 4.3, 8.1, 10.9, 12.8,
14.3, 15.4, respectively (see Fig. 7-7).

2 Buch a factoring was used by V. D. Landon, “Cascade Amplifiers with Maximal
Flatness,” RCA Rev., 1941, 347-362, in particular p. 350; a similar factoring was earlier
used by 8. Butterworth, “On the Theory of Filter Amplifiers,” Wireless Eng., 1930,
536~541, in particular p. 537.

(13)
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Equations (13) and (14) show that 1/ 4/1 F z?is the absolute value of

1/{(Gz—x) (jr—F0) (jx—x2) (jx—Ra) - - - (JT—kn;2) (j—Kn2)}, meven, (15)
1/ { (o —x) (jx — 1) (Jr — ko) (Jz —a) - - - (G + 1)}, n odd;

see Fig. 4-7.
Equation (15) is thus a complex function having 1/4/(1 + z**) as
absolute value. Equation (15), moreover, has no poles in the right half
of the A = y + jz plane and hence!
| isarealizable impedance function.

) 23 Finally Eq. (15) has no zeros in
e the right half of the plane and
hence, as a minimum phase-shift

dir impedance, is uniquely determined

by its absolute value.? In other
words, Eq. (15) is the complex
impedance function of minimum
phase shift having 1/4/(1 + z2%)

st gty as absolute value.
By writing «. (Eq. (14)) in
(@) ® the form a + jb, one sees that
Fra. 4:7.—Location of poles for a flat
staggered n-uple. (a) n = 2; the 4th roots 1
of —1in the left half-plane. (b) n = 3; the —————
6th roots of +1 in the left half-plane. V(1 4+ x2)

is the absolute value of
1

.7 . T . 37T . 37\ |
[s1n—2—n+](:cicos—ﬂ)][sm%—k](zicos%)] -

. (n— D)m . (n — Dw
[smT +7lz £ €os —5—— | ) n even,

] 1

.o . T . 3T . 3r
[sm2—n+3(:1:icos%)”:sm%—%](xi cosiZ)] e

1+ jx), nodd. (16)

Each of the » linear factors of Eq. (16) is the selectivity function of a
staggered single-tuned stage; for example, the first two factors

1 O. Brune, “Synthesis of a Finite Two-terminal Network,” Jour. Math. Phys.,
10, 191236 (1931).

*Y. W. Lee, “Synthesis of Electrical Networks,” Jour. Math. Phys., 11, 83-113
(1932); H. W. Bode, U.S. Patent 2123178 (1938), “ Relations between Attenuation and
Phase in Amplifier Design,” Bell System Tech. Jour., 1940, 421-454, and Network
Analysis and Feedback Amplifier Design, van Nostrand, New York, 1945, Chap. 14.
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1

siné% +j<a: + 005%1)

are the selectivity functions of single-tuned stages with [see Expression
(7)] bandwidths 2 sin =/2n and resonance peaks cos v/2n to the left and
right respectively of band center. Clearly, therefore, the entire complex
impedance in Eq. (16), and with it the absolute value 1/4/(1 4 z?*), can
be synthesized by means of a cascade of n amplifier stages coupled by
suitable single-tuned circuits. These stages are arranged in symmetrical
pairs (Fig. 4-8), except that in the case where n is odd the last factor
represents a centered stage.

The point of this synthesis by factoring is that the isolating action of
vacuum tubes permits the building up of complicated impedances a

1 0

a (c)
Fia. 4-8.—Synthesis of 1/4/ (1 + z®") curve.

factor at a time, each simple factor being extremely easy to adjust and
with no interaction among the various adjustments.

Synthesis by factoring can, of course, be used to obtain absolute-value
curves more complicated than 1/4/(1 4 z?*). Indeed, the method
appears to be of general application in all cases where one desires an ampli-
fier of specified pass band and more or less high gain—‘‘ filter amplifiers,”’
as Butterworth would call them. The amplifying action of several
tubes is needed in order to secure the gain. One then might as well
make use of their isolating action also, thereby making it possible to
employ only very simple circuits throughout.

Proof That the g® Factor of a Flat Staggered n-uple Is 1.—Equation
(16) has demonstrated point (1) of Sec. 4-6, that it is possible to stagger n
single-tuned stages so as to get a 1/4/(1 4+ z?*) selectivity curve; it
remains to show (2) that the G® factor is 1. This follows very easily,
however, by associating the numerator 3 with each of the n factors of
Eq. (16). So modified, each of these factors represents a single-tuned
stage of G® factor 1. The absolute value of the product,

@
VI + x?n)’
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has an over-all gain of (})* and therefore a stage gain of . Because its
over-all bandwidth is 2, the G® factoris 1, as desired. This completes the
proof of the assertions of Sec. 4-6.

Staggered n-uple Table. Arithmetic Symmetry.—Table 4-2, derived
from Eq. (16), shows how to make up a flat staggered n-uple, n = 1,
. . ., 7, centered at fo and with over-all bandwidth ®, under the assump-
tion of arithmetic symmetry, i.e., ®/f; small.

Table 4-2 shows that the component single-tuned stages of a staggered
n-uple have smaller bandwidths than the over-all bandwidth of the
n-uple. This case contrasts with the case of synchronous-tuned ampli-
fiers, where, as has been seen, the individual bandwidths are considerably
larger than the over-all bandwidth.

TaBLE 4-2—FLAT STAGGERED n-UPLES

Approximate case: Arithmetic symmetry,
Band center = fo, over-all bandwidth = ®, and ®/f, small

n Component single~-tuned stages
2. Staggered-pair......... Two stages staggered at fo + 0.35® of bandwidth 0.71®
. Two stages staggered at fy + 0.43® of bandwidth 0.5®
3. Staggered-triple.. .. ... {One stage centered at fy of bandwidth ®

Two stages staggered at fo
Two stages staggered at fo

Two stages staggered at fo
5. Staggered-quintuple. .. {Two stages staggered at fo

4. Staggered-quadruple. .. {

+ 0.46® of bandwidth 0.38®
+ 0.19® of bandwidth 0.92®
+ 0.48® of bandwidth 0.31®
+ 0.29® of bandwidth 0.81®

One stage centered at fy of bandwidth ®

Two stages staggered at fo
6. Staggered-sextuple..... {Two stages staggered at fo
Two stages staggered at fo
Two stages staggered at fy
Two stages staggered at fo

+ 0.48® of bandwidth 0.26®
+ 0.35® of bandwidth 0.71®
+ 0.13® of bandwidth 0.97®
+ 0.49® of bandwidth 0.228
+ 0.39® of bandwidth 0.62®

7. Staggered-septuple. . .. Two stages staggered at fy + 0.22® of bandwidth 0.90®

One stage centered at f, of bandwidth ®
4.7. Staggered n-uples: Geometric Symmetry.—Consideration will
now be given to the exact treatment of single-tuned circuits, a matter
which, as seen in Sec. 4-2, involves geometric symmetry.!
Definition of an Ezxact Flat-staggered n-uple—The goal of this section
is to demonstrate that

1. It is possible to stagger n single-tuned stages so as to get a
1

1 2n
| i)

1 The exact case appears to have been first treated, but in a cumbersome way, by
Rudolf Schienemann, ‘‘Trigerfrequenzverstirker groszer Bandbreite mit gegenein-
ander verstimmten Einzelkreisen,” Telegraphen Fernsprech Technik,1939,1-7. Schie-
nemann was apparently the first writer to point out the main advantage of stagger-
tuning over synchronous-tuning, i.e., its larger gain-bandwidth product, although
others had earlier noted the possibility of synthesizing complicated networks from
simple circuits separated by tubes (“‘filter amplifiers” in Butterworth’s designation).
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selectivity curve (such an arrangement is called an exact flat-
staggered n-uple, whose bandwidth/band center ratio! is 8).
2. The G® factor for a flat-staggered n-uple is 1.

Two Staggered Single-tuned Stages of Egqual Dissipation Factor.—
Substituting d = 1/(2rfC) in Eq. (3) one gets

1

gm
2C i+ (jf fo)

as the gain function. Expressing gain in units of g./2rC one can write

(17)

1

d+3<f f°)

It is seen that the bandwidth of Expression (18) is df; and the gain
is 1/(df,), in accord with the G®
factor of 1 for a single-tuned
circuit.

Now suppose a single-tuned
stage peaked at frequency « is ) )
followed by a stage peaked at 1/a, e 1 @
so that f=1 is the geometric Fig. 4-9.—Two exact single-tuned circuits of
mean of their resonant frequen- same dissipation factor.
cies. Suppose further that the two stages have the same dissipation factor
d (Fig. 4-9). Then the complex gain function of the product is [see Eq.

(18)]

(18)

Voltage

R

o

d+](f—7)d+3<fa—})

Multiplying the denominators together yields

d2+gdfcx-—yf +J f“!—-——yf—!—oz—fl2

=d2+a2+c—!3+jda<f—]7>+%i(f——fl—)—(2—}-%)- (19)

1 And whose band center is f = 1; other center frequencies are then obtained
trivially (see Table 4-3). The value of 6 may be either less or greater than 1.
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Now

and

Hence the right side of Eq. (19) can be written as

(Y s o) ()

and one has

Q1=

[+ 4

a+i(L=-5)a+i( )

- , L , . (20)

[ (= )l G+ O]

The point to observe about Eq. (20) is that the only variable in the right-

hand side is the single combination j ( — %), displaying geometric

symmetry about f = 1, which is the geometric mean of « and 1/a.
Flat-staggered n-uples—Multiplying the two terms in each bracket of
Eq. (16) shows that 1/4/1 + z?"is the absolute value of

1
[1 + 722 sin ~21Ln + (jx)“’J [1 + jz2 sin %;: + (jx)g] C
[1 + 722 sin (_n;z—%)r + (jx)z]; 7 even,
1
o . .. 3 ]
{1 + ja2 sin &~ + (Jr)zJ [1 + jr2 sin 37+ (]1)2] e
{3 + jz), n odd. (2la)

By analogy with Eq. (21a) it follows that
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is the absolute value of
1

o )
[62 +j(f —}) 28 sin M2 LT [J( *fl)]} n even,

1

P ) |

[a +j(f -})} nodd. (21b)

1t is now possible to synthesize the absolute value

1
)

by equating the coefficients of j (f — f) in Expressions (20) and (21b).

For the first factor of Expression (21b), for example, one needs to know
the dissipation factor d, and resonant frequency a; satisfying

2
di + (al - l) = 82, (22a)
23]

1 .
d; (ozl + Z) = 26 sin 5 (22b)

Squaring Eq. (22b) and replacing
1\? 2
(011 +—> by (ou - —1~) +4
o oy

1y’ P
2 2 — 2 2
d3 (a, 011) + 4d% = 46 sin 557

one gets

substituting Eq. (22a) yields
di — d2(4 + 8% + 48° si11221';—z = 0;

solving,

4+ 8 — |16 4 85? + 3% — 1662 sin? -
& = N 2n
1 2




184 SYNCHRONOUS AND STAGGERED AMPLIFIERS [SEc. 4.7

using the double-angle formula 1 — 2 sin? #/2n = cos w/n, one concludes
that

4+62—\/16+862c0s%+64
2

di = 5 - (22¢)

Equations (22¢) and (22¢) completely express d, and «; in terms of &.
Proceeding similarly with the other factors of Eq. (21) it is seen that

1

S

is the absolute value of
1

oy

S
i
) ds +J3<fa3 - ﬁi‘;)

Ay (42708 ]

[+ 2 . . 1
Gnor + 7 ( - _> ny +J (fa"_l fan—1>
1 - - 1 _.1_1 , nodd (23)
&+ (f f>

where, fork =1,3, - -+ ,n — 1,

4 + 82 — /16 + 8% cos kr/n + 8*
2 ’

1 2
(a,, -~ —> + a2 = o (24)
(2373

The factors in Eq. (23) are the impedances of single-tuned stages of
dissipation factors dx, resonant in pairs at frequencies a5 and 1/a4.  This
establishes assertion (1) of Sec. 4-7; assertion (2) is evident from the fact
that each of the factors of Eq. (23) has the G® factor 1, as does

ds+j

Q|\

, neven,

&=

itself,
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TABLE 4:3.—FLAT-STAGGERED n-UPLES
Exact case: geometric symmetry
Band center = fo; over-all bandwidth = ®; and ®/f, = 5
n Component single-tuned stages
2. Staggered-pair........... Two stages staggered at foa and fo/a of dissipation
factor d, where
potte - VBT
2
1 2
(a - —-) +d? = 8
o -

=)

3. Staggered-triple...... ... Two stages staggered at fia and fo/e of dissipation
factor d, one stage centered at fy of bandwidth ®,
where

PR Y (Y XY
B 2

SR

4. Staggered-quadruple..... Two stages staggered at foa; and fo/ay of dissipation
factor d;, two stages staggered at foas and fo/ay of
dissipation factors d;, where

g i = V16 4 56568 + 5t
-
2

1 2
ou——) +d§‘—“5’,
o
_ 4+~ /16 — 5.6568 + 5

2

1 2
(a: - "‘) + dg = §2
ag

5. Staggered-quintuple. . ... Two stages staggered at foon and fo/a; of dissipation
factor di, two stages staggered at foes and fo/a; of
dissipation factor ds, one stage centered at fo of band-
width ®, where

_ 44816 + 647252 + &

2

1 2
<a1 - '—) + d: = 52,
ajy

& 4 + 8% — /16 — 2.4728% + &4

: 2

2
(-2 vane
asg

4

4
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The various stages of an exact flat-staggered n-uple do not have the
same gain at band center [f = 1 in Eq. (23)], but instead, as follows from

1\’ i
a + (ak - ——) = 32,
Qg

the gain of each stage at band center is inversely proportional to its own
resonant frequency. Each pair of staggered stages has as much gain at
band center as any other pair, however, and for the odd n case the gain
of the centered stage is exactly the mean gain of the n-uple. Further,
for the odd n case the bandwidth of the centered stage is exactly the
over-all bandwidth of the n-uple.

TasLE 4-4.—FLAT-STAGGERED 7n-UPLES

Asymptotic case: for 8 = ®/f, less than 0.3
Bandwidth = f; over-all bandwidth = ®; and ®/f, = &

n Component single-tuned stages
2. Staggered-pair.......... Two stages staggered at fo + 0.35® of dissipation factor
0.713
3. Staggered-triple..... ... Two stages staggered at fo + 0.43® of dissipation factor
0.55, one stage centered at fo of bandwidth &
4. Staggered-quadruple.... Two stages staggered at fo + 0.46® of dissipation factor

0.58, two stages staggered at fo + 0.92® of dissipation
factor 0.198

5. Staggered-quintuple. ... Two stages staggered at fy + 0.48® of dissipation factor
0.315, two stages staggered at fo + 0.29® of dissipa-
tion factor 0.815, one stage centered at f; of band-
width ®

6. Staggered-sextuple...... Two stages staggered at fo + 0.48® of dissipation factor
0.268, two stages staggered at f, + 0.35® of dissipa-
tion factor 0.713, two stages staggered at fo + 0.13®
of dissipation factor 0.974

7. Staggered-septuple...... Two stages staggered at fo + 0.49® of dissipation factor
0.225, two stages staggered at fo + 0.398 of dissipa-
tion factor 0.623, two stages staggered at fo + 0.22@
of dissipation factor 0.908, one stage centered at fo
of bandwidth ®

Ezxact Case.~—Table 4-3, derived from Eqs. (23) and (24), shows how
to make up an exact flat staggered n-uple, n = 1, - - - | 5, centered at
fo and with over-all bandwidth ® The ratio ®/f, is denoted by s.
Because nearly equal numbers are subtracted in these formulas, calcula-
tions should be carried out to three decimals.

Asymptotic Values.—The asymptotic values of the expressions in
Table 4-3 for small values of 8 are easily derived, taking into account the

approximations
1 1
=l+3 (“ - a)’

R

and

Rl
I

—_

|

B[ =
TN
5

|

R~
N—
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for small values of @ — (1/a). These asymptotic values are listed in
Table 4-4; they are accurate for § = ®/f, less than 0.3; and because of
their simplicity and accuracy in that range, they are to be preferred to
the values derived from Table 4-2.

4.8. Flat-staggered Pairs, in Detail. Graphs.—Figure 4-10 was pre-
pared from Table 4-3 for the case n = 2. The use of Fig. 410 will be
clear from the following example:

Suppose a flat-staggered pair of 8 Mc/sec bandwidth is to be designed
with band center at 10 Me/sec. Then fo = 10 Mc/sec, ® = 8 Mc/sec,
and & = 0.8, so that from Fig. 4-10 one finds that « = 1.33 andd = 0.535.
Therefore, the pair is to be constructed of one stage staggered at

10 X 1.33 = 13.3 Mc/sec,
of dissipation factor 0.535 and hence of bandwidth
0.535 X 13.3 = 7.1 Mc/sec,

and one stage staggered at 10/1.33 = 7.5 Mc/sec, of dissipation factor
0.535 and hence of bandwidth 0.535 X 7.5 = 4.0 Mc/sec.

Cascaded Pairs and Comparison with Synchronous Single-tuned
Stages.—The selectivity function of a flat staggered pair has the form

1/4/(1 4+ %) in the low dissipation case and 1 / \/ 54 4 (f - %)‘ in the

exact case. These curves are squarer than those for single-tuned stages;
and because they are squarer, the bandwidth goes down less rapidly;! it is
easy to see that the over-all bandwidth of m pairs is the bandwidth of
one pair times v/(2¥™ — 1). For m > 1, a good approximation is

bandwidth of one pair

1.1 +/m

Over-all bandwidth of m pairs =

(see Table 4-5).

TABLE 4-5—SHRINKING OF OVER-ALL BANDWIDTH, m-CASCADED FLAT-STAGGERED
Pargrs

. 1
4 —— . .
m | V27 1 (exact) RRRC, (approx.)

1 1.00

2 0.80 0.76
3 0.71 0.69
4 0.66 0.64
5 0.62 0.61

1 And the overshoot is larger: 4.3 per cent for one pair, 6.25 per cent for two pairs,
7.7 per cent for three pairs, 8.3 per cent for four pairs, 9.9 per cent for six pairs (see
Fig. 7-5).
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F1a. 4-10.—Design curves for an exact flat staggered pair.

1. An exact flat staggered pair of stage gain G has as great an over-all bandwidth ® as
does one single-tuned stage of gain G, i.e., GB = gm/2xC.

2. An exact flat staggered pair of over-all bandwidth ®, geometrically centered at fo
consists of two single-tuned stages staggered at foa and fo/a of dissipation factor d,
a being given in the upper graph and d in the Jower graph as functions of & = ®&/fo.

3. An amplifier made up of m pairs has 1/(1.1 W) the bandwidth of one pair.
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For an n-stage amplifier, n even, made up of n/2 flat-staggered pairs,
the g® factor is therefore

1 .

4
n
N

Dividing Expression (25) by Expression (11) one sees that the advantage
in g® factor of an n-stage flat-staggered-pair amplifier over an n-stage
synchronous single-tuned amplifier is

1.2v/7n
4

n

1.1 ,\/;

Three elements contribute to this advantage: the n/2 instead of =,

because there are only half as many 1/4/(1 4 z%) selectivity curves as

there are stages; the fourth root instead of the square root, because of the

1/4/(1 + z%) curve rather than the 1/4/(1 4 z?) curve; and the 1.1
instead of the 1.2.

Expression (26) has the value 2.0 for n = 6. This means that a
six-stage amplifier in the form of three flat-staggered pairs has twice the
G® factor of a six-stage synchronous single-tuned amplifier; hence for
the same over-all gain the six-stage flat-staggered-pair amplifier has
twice the over-all bandwidth.

4.9. Flat-staggered Triples, in Detail. Graphs—Figure 4-11 was
prepared from Table 4:3 for the case n = 3. The use of Fig. 4-11 will
be clear from the following example:

Suppose a flat-staggered triple with a 20.6 Mc/sec bandwidth and
band center at 14.3 Mc/sec is to be designed. Then fo = 14.3 Mc/sec,
® = 20.6 Mc/sec, and & = 1.44, so that from Fig. 4-11, « = 1.84 and

d = 0.60.
Therefore, the triple is to be constructed from

(25)

(26)

One stage staggered at 14.3 X 1.84 = 26.3 Mc/sec, of dissipation
factor 0.60 and hence of bandwidth 0.60 X 26.3 = 15.8 Mc/sec.
One stage staggered at 14.3/1.84 = 7.8 Mc/sec, of dissipation factor

0.60 and hence of bandwidth 0.60 X 7.8 = 4.7 Mc/sec.
One stage centered at 14.3 Mc/sec of bandwidth 20.6 Mc/sec.

Cascaded Triples and Comparison with Synchronous Single-tuned
Stages.—The selectivity function of a flat staggered triple has the form

1/4/(1 + z%) in the low-dissipation case and 1 / A [_56 + (f — })6 in
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Fia. 4:11.—Design curves for an exact flat staggered triple.
NortE:

1. An exact flat staggered triple of stage gain G has as great an over-all bandwidth ®
as does one single-tuned stage of gain G, i.e., §® = gm/27xC.

2. An exact flat staggered triple of over-all bandwidth ®, geometrically centered at
Jo, consists of two single-tuned stages staggered at foa and fo/a of dissipation
factor d, and one single-tuned stage centered at fo of bandwidth ®, a being given
in the upper graph and d in the lower graph as functions of § = ®/f.

3. Ap amplifier made up of m triples has 1/(1.06 \s/m—) the bandwidth of one triple.
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the exact case. These curves are squarer than those for a staggered
pair; and because they are squarer, the bandwidth goes down less rapidly;!
it is easy to see that the over-all bandwidth of m triples is the bandwidth
of one triple times /2™ — 1. For m > 1 a good approximation is

bandwidth of one triple
1.06 v/m

Over-all bandwidth of m triples =

(see Table 4-6).

TABLE 4.6.—SHRINKING OF OVER-ALL BANDWIDTH, m-CASCADED FLAT-STAGGERED
TRIPLES

m | /2Um =1 (exact) | 1.06 +/m (approx.)

1.00
0.86
0.80
0.76
0.73

B N
oo
3 -1~ -
NaIx:

For an n-stage amplifier, n divisible by 3, made up of n/3 flat-staggered
triples, the G® factor is therefore
1

=
n
1.06 \[5

Dividing Expression (27) by Expression (11), the advantage in ¢®
factor of an n-stage flat-staggered-triple amplifier over an n-stage syn-
chronous single-tuned amplifier is found to be

1.2/
—— (28)
oo
Expression (28) has the value 2.5 for n = 6. This means that a six-
stage amplifier in the form of two flat-staggered triples has 2.5 times the
G® factor of a six-stage synchronous single-tuned amplifier; hence for
the same over-all gain the six-stage flat-staggered-triple amplifier has 2.5
times the over-all bandwidth.
4-10. Gain Control of Stagger-tuned Amplifiers. First-order Effects.
In a cascaded linear amplifier without feedback the over-all gain at any

frequency is the product of all the g,.’s by the product of all the imped-
ances at that frequency. Because of this multiplicative property, if one

27

1 And the overshoot is larger: 8.15 per cent for one triple, 11.2 per cent for two
triples, 14.2 per cent for four triples (see Fig. 7-6).
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of the stages has its gn. reduced but its selectivity characteristic left
unchanged, the over-all gain is reduced in proportion, whereas the over-all
selectivity curve is completely unaffected. Consequently, to the extent
to which tube capacities and loadings do not vary with g, it is possible
to gain-control a stagger-tuned zmplifier in any stage or combination of
stages. In particular, there is no need to gain-control in pairs.

Second-order Effects.—To a certain extent it is however the case
that reducing the ¢g. of a stage does affect its input capacity and input
loading. Variations in input capacity can often be held within narrow
limits by the well-known artifice of leaving unbypassed part of the
cathode-bias resistor of the gain-controlled stages, and variations in
input resistance can be held within narrow limits by choice of a suitable
cathode-bypass condenser. In practice, these measures have not proved
necessary.

Because of grid-plate capacity there is a variation in input loading and
capacity due to the Miller effect. Rather bad offenders in this respect
are 6AKS5's, which have a ratio of transconductance to grid-plate capacity,
socket included, that is about a third that of 6AC7’s. Miller effect in
B6AKS5's is somewhat vexing, but it is not fatal in wide-band amplifiers
even at frequencies as high as 200 Mc/sec.

4.11. Examples of Stagger-tuned Amplifiers. Ezample 1. Nine-
stage 80-db 6AC7 Flat-staggered Triple Amplifier Covering the Band 8.25 to
24.75 Mc/Sec.—The geometric mean of 8.25 and 24.75 is 14.3 Mec/sec,
which is therefore the geometric center of the band.

Preliminary estimates show that it is sufficient to use nine 6AC7
stages arranged in the form of three flat-staggered triples. From Table
4-6 it follows that the bandwidth per triple must be 20.6 Mc/sec in order
to obtain the 16.5 Mec/sec over-all bandwidth.

The mean stage gain is most conveniently determined from the rela-
tion that the G@® factor for a flat-staggered triple is equal to 1.  Assuming
a 6AC7 gm of 9000 pmhos and a C of 25 uuf, the ratio

29.:%0 = 57.3 Mc/sec;
consequently the mean stage gain is 57.3/20.6 = 2.78, or 8.9 db.

The center frequencies and bandwidths of the stages making up the
three triples have already been worked out in Sec. 4-9. The load resistors
are determined [from the relation that stage bandwidth = 1/(2rRC)] to
be 403, 1360, and 309 obms respectively; the practical values are 390,
1500, and 330.

A block diagram of an amplifier of this sort is shown in Fig. 4-12.1

1 Thie amplifier was built at the Radiation Laboratory, 1943, and required the

theory of the case of large fractional bandwidth. The widest stagger-tuned amplifier
eonstructed at the Radiation Laboratory had a bandwidth of 35 Mec/sec; the center
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The order of frequencies is 14.3, 7.8, 26.3; 7.8, 26.3, 14.3; 26.3, 7.8,
14.3. No special significance is to be attached to this order, although it
seems wise to center both the first stage and the stage driving the detector.
The tuning coils are fixed-tuned and wound on 4-in. bakelite rods to
resonate with 25 uuf at the appropriate frequencies, as measured with a

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
143 26.3 7.8 26.3 7.8 14.3
Mc/sec Mc/sec Mc/sec Mc/sec Mc/sec Mc/sec
d=144 d=0.60 d=0.60 d=0.60 d=0.60 d=1.44
R=311 R =407 R=1377 R=407 R=1377 R=311
Stage 7 Stage 8 Stage 9 Stage 10

7.8 26.3 143
Mc/sec Mc/sec Mc/sec
d=060 [ d=060 [ d=144 [ Detector
R=1377 R=407 R=311

(@)
6AC7
0.001
L
R
£
270
+105v
]

Fia. 4:12.—(a) Block diagram of nine-stage 80-db 6AC7 flat-staggered triple amplifier

covering the band 8.25 to 24.75 Mc/sec. (b) Typical stage. Apart from the values of B
and L the various amplifier stages have the same constants.
Q-meter. Because of the large bandwidth/band center ratio, the tuning
is very uncritical. In all likelihood the ccils could be wound from
information contained in the inductance tables, and it would thus be
possible to build amplifiers of this type with no equipment other than a
soldering iron and a pair of pliers.

Ezample 2. Four-stage 80-db 6AKS Flat-staggered Quintuple, 10
Mc/Sec wide at 30 Mc/Sec.—The purpose of this amplifier, shown in
frequency was 80 Mc/sec, and 15 6AK5’s were emploved in three flat-staggered
quintuples. It was used as if. amplifier of an experimental radar system employ-
ing 4% msec pulses. The gain was 100 db.
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Figs. 4-13 and 4-14, is to get high performance in a small space. The
amplifier is folded back on itself, with the input connection and the first
three amplifier stages located on one half of the chassis and the fourth
amplifier stage, detector, and a pulse amplifier stage on the other half.
The two halves are separately wired, each half having great accessibility
because of its open L-shaped chassis. The two halves are connected with
metal bushings, and the cover is then put over the combination.

There is only one connection between the two halves of the chassis, a
wire connecting the tuning coil between Stage 3 and Stage 4 to the grid
of Stage 4. This wires goes through one of the metal bushings, the

: 26.0 Mc/sec 33.2 c/sec 27.2 Mc/sec | 10uh
.{E)r‘; %:g;s:c 3 MC/SEC 2.6 Mc/se 6A EAKS 7.2 Mc/secpm\

6AKS
3
6ALS
! Iz 5
E: wmutl 34700
Gy
- 0.001 0.001 ~ 4700
2 To gain control
v v Y {0 to-10v,
470 470 410 1000 ohm source)
~ A +150v,
470 100 ogory ~ 70ma
Heaters:
0.001
L 6.3v
03uh

Fig. 4-13.—Circuit diagram of four-stage 80-db 6AKS5 flat-staggered quintuple,
10 Mc/sec wide at 30 Mc/sec. The coils are unity-coupled. The chassis shown in Fig.
4-14 contains a pulse amplifier stage also.
return path for the signal currents being conducted along the inside
surface of the second chassis, through the inside surface of the metal
bushing, to the inside surface of the first chassis. In folded amplifiers
it is essential in connecting the two chassis together to adhere to the
principle of providing for the signal currents between the chassis a return
path that lies entirely on the inner surfaces of the chassis. No difficulties
are experienced in building folded amplifiers of over 100-db gain when
such precautions are taken.

The use of “feed-through” button bypass condensers,!’ mounted in
the wall of the chassis, makes it possible to have only two components per
amplifier stage in the interior of the chassis, namely, a tuning coil and a
damping resistor. The decoupling resistors are situated on the other

! Obtainable from the Erie Resistor Manufacturing Corporation, Erie, Pa,
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side of the vertical chassis wall, as can be seen in the outer view of Fig.
4-14.

The tuning coils are on powdered iron cores, fixed-tuned and bifilar-
wound, i.e., unity-coupled, thus eliminating the need for blocking con-
densers. Although there are only four stages, there are five tuning coils,
the input coil, which is the center-tuned coil of the quintuple, being the
fifth.

The amplifier is designed according to the entry for n = 5 in Table
4-3, which leads to the values of center frequency and bandwidth shown
in Fig. 4-13. To achieve a gain of 80 db in four stages requires a mean

[ ¥ ee TR T JERE G 1 SEIE e
Fig. 4:14b.—Top chassis view of four-stage 80-db 6 AKS5 flat-staggered quintuple, 10 Mc/sec
wide at 30 Me/sec.

voltage gain of 10 per stage. Since the g®-product for a flat-staggered
quintuple is equal to g.,/27C, an over-all bandwidth of 10 Mc/sec requires
the 6AK5’s to be operated with a ¢,/2xC ratio of 100 Mc/sec. In the
amplifier of Fig. 4-13 the interstage capacity C is 10 puf; hence the tubes
have to be operated with a g, of 6280 umhos. This value is above the
normal rated 6AKS5 value, but the special conditions of use of this
amplifier make it legitimate to overrun the tubes.

Ezxample 3. Twelve-stage 100-db 6AKS Amplifier, Made Up of Four
Flat-staggered Triples, 20 Mc/Sec Wide at 200 Me¢/Sec.—This amplifier
was designed and built by M. T. Lebenbaum of Radio Research Labora-
tory. The rough design of such an amplifier will first be worked through,
to show how one determines whether or not a given number of stages is
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enough to provide the desired gain and bandwidth. For a 20-Mc/sec
over-all bandwidth in four triples, the bandwidth per triple has to be
26.3 Mc/sec (20/0.76), from Table 4-6. To achieve a gain in 12 stages
of 100 db the required stage gain is 833 db = 2.61. The required
g®-product for each triple is then 2.61 X 2.63 = 68.5 Mc/sec. There-
fore a ¢g./2rC ratio of 68.5 Me/sec is needed; and if C = 11 upf, a g,, of
4750 pmhos is required. This is a reasonable value, slightly less than
the nominal g. for 6AKS5's, and hence validates the rough design.

The problem is now reduced to obtaining a flat-staggered triple of
26.3 Mc/sec bandwidth at 200 Mc/sec. The value of § =&/f, is 0.132,
which is small enough to warrant use of Table 4-4. From this table, one
finds that the triple should be composed of one stage at

200 + (0.43 X 26.3) = 211.3 Me/sec,

of dissipation factor 0.5 X 0.132 = 0.066 and hence of bandwidth
0.066 X 211.3 = 13.9 Mec/sec; one stage at

200 — (0.43 X 26.3) = 188.7 Me/sec,

of dissipation factor 0.5 X 0.132 = 0.066 and hence of bandwidth
0.066 X 188.7 = 12.4 Mc/sec; and one stage at 200 Mec/sec of band-
width 26.3 Mec/sec.

The damping resistances for these bandwidths and an interstage
capacity of 11 uuf are 1040, 1160, and 550 ohms. A distinction has to be
made, however, between the damping resistances and the actual plate-
load resistors, especially at frequencies as high as 200 Mec/sec. In
parallel with the tangible load resistors are three types of tube input
resistance due to (1) transit~time effects, (2) cathode-lead inductance,
and (3) ““Miller-effect”” feedback through the grid-plate capacitance from
the plate circuits. The first two of these resistances are of positive sign
in the amplifiers discussed here and vary inversely as the square of
frequency. Since with 6AKS's the input resistance from these two
effects is about 100,000 ohms at 30 Mc/see, its influence is negligible at
that frequency; at 200 Mc/see, however, the input resistance is only
about 2000 ahms and its influence is considerable. Even more important
in stagger-tuned ampilifiers is the Miller-effect input resistance, because
it may have either sign. This input resistance measured at the grid-
circuit resonant frequency is positive for a tube whose plate circuit is
tuned to a frequency lower than that of the grid circuit and negative in
the opposite case. At 200 Mc/sec this effect is serious in 6AK5’s because
of the large grid-plate susceptance. In such a case, moreover, the input
resistance varies rapidly over the band, and the individual circuits are not
really single-tuned. An exact analysis is extremely complicated, but it
has been found possible to get satisfactory results, even at 200 Me/sec, by
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experimental determination of the plate-load resistor values needed to
give the required individual bandwidths, It would probably be difficult
to go much beyond 200 Me/sec with 6AK5’s, however.

In the case at hand the constants of a triple are shown in Fig. 4-15;
observe that the only nontube loading in the 211 Mec/sec circuit is the
loss resistance, because of finite §, of the coil connecting the plate to B+

The unbypassed 10-ohm resistors between the B lead and the screen
terminals suppress a tendency of 6AKS5’s to oscillate parasitically at
about 500 or 600 Me¢/sec when one employs high-Q bypass condensers
such as the mica button type. Although these parasitic oscillations

A
6AKS

;: 200 Mc/sec 211.3 Mc/sec 188.7 Mc/sec

26.3 Mc/sec 13.9 Mc/sec 12.4 Mc/sec

6AKS 6AKS 6AKS5

AAA

220 uuf
‘2"7"6 To + 105v
AA Wi WA : To gain
270 270 270 control
Heaters: /\ /\
eaters 03uh (\0.3 uh 03 uh 0.3 uh
SO T
T220uut  T220 uut T220 uut T 220 upt

-

Fiag. 4-15.—Circuit diagram of one triple of 12-stage 100-db 6 AXK5 amplifier made up of
four flat-staggered triples, 20 Mc/sec wide at 200 Mc/sec.

occur only when the B4 voltage is at least 30 per cent above its rated
value, it seems wise to be cautious. This matter of parasitic oscillations
constitutes, incidentally, an argument against bypass condensers of
high-Q.

Figure 4-16 is a photograph of a few stages of this amplifier. The
amplifier is tunable, and the tuning coils are of special interest. The coils
are essentially small springs of phosphor-bronze wire which are wound,
as shown in Fig. 4-16, on -in. diameter linen-bakelite rods. These rods
are backed by other springs, not shown, and connected to screws on the
upper side of the chassis so as to permit extension or retraction of the
bakelite rod into the underside of the chassis. This action has the effect



Fic. 4-16.—Bottom view of a few stages of a 12-stage 100-db 6AKS5 amplifier made up of four flat-staggered triples, 20 Mc/sec wide at 200 Mc/sec.
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of increasing or decreasing the spacing between coil turns, thereby varying
the coil inductance.

The alignment procedure is very simple and consists of connecting a
signal generator to the amplifier input terminals and a voltmeter across
the detector output terminals and then peaking each stage for maximum
meter deflection, with the signal generator set to the frequency appro-
priate to that stage. The order in which the peaking is done is immate-
rial. It is easy to see how this procedure could be further simplified by
a scheme of matching a color code of the adjustment screws to a color
code of the signal-generator settings.

The reason for making this amplifier tunable is the wide variation at
200 Mc/sec of the resonant frequency of the individual circuits, prin-
cipally because of the variability in 6AKS interelectrode capacities.
The sum of the variability in 6AK5 input and output capacities per-
mitted by the JAN-1A specifications is +0.9 uuf. If the average
interstage capacity is 11 uuf, there is a fractional variability in capacity
of about + y%; this means a variability in center frequency of about
+ 4, which is about +8 Mec/sec at 200 Me/sec. Although such
extreme variations in eapacity, and hence in tuning, are very unlikely,
variations half as large, i.e., +4 Me/sec at 200 Mc/sec, are entirely
likely. Such variations are too large to be neglected in a 20-Mec/sec wide
amplifier; hence the provision for tuning.

In summary one can say that a 20-Mc/sec wide amplifier at 200
Me/sec is more difficult to build than a 20-Me/sec wide amplifier at
60 Mec/sec in only one respect, namely, the need for tuning the individual
stages of the 200-Mec/sec amplifier.



CHAPTER 5
DOUBLE~TUNED CIRCUITS

By Ricaarp Q. Twiss

6-1. Introduction.—The theory of the double<tuned interstage cou-
pling has been extensively discussed by a large number of writers! for the
broadcast receiver case, where the fractional bandwidth is small (less
than 0.1) and the €’s of the primary and secondary circuits are large
(greater than 20). In this chapter, however, attention will be confined

, L —
9
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Fre, 5-1a.~1Inductance-coupled double-tuned cireuit.

ST

!
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Fia. 5:1b.—Capacity-coupled double-tuned circuit.

to the wide-band fixed-tuned case (bandwidths in excess of 4 Me/sec,
fractional bandwidths in excess of 0.1), and only two types of coupling
will be considered, the inductance-coupled circuit of Fig. 5-1a¢ and the
capacity-coupled circuit of Fig. 5-1». Of these the inductance-coupled
circuit is the more useful, for the reasons given in Sec. 5-2, and unless
otherwise stated it will be assumed that this circuit is being discussed.

* A very useful and complete account is given by C. B. Aiken, “Two Mesh Tuned
Coupled Circuit Filters,”” Proc. I.R.E., 36, February 1937. Considerable use will be
made of the results of this paper in the present chapter; and as far as possible, the
same syrmbols will be used. Reference may also be made to F. E. Terman, Radio
Engineera Handbook, 1st ed., McGraw-Hill, New York, 1943, Sec. 3.
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The approximate theory, mentioned above and hereafter called the
“high-Q’' theory, still yields very useful information when applied to
circuits whose ¢ may be as low as 1. This is fortunate, since the more
exact low-Q) case is very cumbersome mathematically and has been fully
worked out only for the case of transitional coupling. The approximate
theory vields almost exact expressions for the gain-bandwidth factor and
midband gain of a double-tuned circuit. In addition it gives values for
the @'s and the coefficient of coupling needed to achieve a desired band-
width and shape of amplitude response that are useful first approxima-
tions. The exact low-@ theory must, however, be used to find the correct
resonant frequencies of the tuned eircuits, the exact values of @, and the
coefficient of coupling. Alternatively, the high-Q theory can be used to
find the approximate values of the circuit constants, and the correct
values can then be found experimentally by a cut-and-try process.

Some of the more important results of the high-Q theory are given
in Sec. 5-2, and an outline of the low-Q theory is given in Sec. 5'5. The
latter section consists of a set of a design data for the transitionally
coupled case.

In Sec. 56 is given a brief discussion of the so-called ‘‘stagger-
damped” bandpass amplifier; this is a scheme for obtaining very wide-band
amplifiers by over- and underdamping successive stages of double-tuned
circuits. The chapter concludes with a number of examples chosen to
illustrate the theory.

5-2. The General High-Q Case.—The basic circuit upon which the
analysis is based is that of Fig. 5-1a. The results can also be applied
to the circuit of Fig. 5-1b by suitable modification of the basic formulas.

The following symbols will be used, the notation being essentially
that of Aiken.!

fo, the midband frequency.

1

1
2 = e .
o= w0 = G T VIl

k= \/%[I; the coefficient of coupling.
s = k v/Q:Q., the coupling index.

p = Q1/Q», the @ ratio.
b=p+1/p=(/Q2) + (Q:/Q).

8 = (s — }b)/(s? + 1), the shape index.

v = V@ (w/ws — wo/w), the frequency variable.

J, the primary current.

¢ C. B. Aiken, “Two Mesh Tuned Coupled-circuit Filters,” Proc. [.R.E., 28, No. 2,
February 1937, In the remainder of this chapter this paper will be referred to simply
as Aiken,
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E,, the primary voltage.

E,, the secondary voltage.

It is shown by Aiken that Zi,, the transfer impedance, is given
approximately by '

_E

Zis = - js \/R ¥

T+ +0vVb+ 2+ ()
so that the absolute value of Z,, is given by
E,

L 8 N Rle

J’ [(1 + s%)? — 2 (s2 - %) v+ v‘]w ®

when @, Q: > 20 and k¥ < 0.05.

One of the most common uses for the double-tuned circuit is as inter-
stage network in a bandpass amplifier. If J is the output current of a
tube whose dynamic resistance r, is included in R;, then J is related to
the grid-cathode voltage of the tube by the equation

(1

12| =

J= - gméy,

where ¢.. is the transconductance and e, the grid-cathode voltage. The
expression for the absolute value of the stage voltage gain G can therefore
be written

\E gm \/m s 3)

= e—j_[(1-{-32)2—2(82—%)02-*—”4]%

Equations (2) or (3), which give the amplitude response of the net-
work, are of fundamental importance and yield most of the useful
information needed in the design of amplifiers employing high-@ double-
tuned cireuits.

Universal Resonance Curves.—Aiken has utilized Eq. (1) to plot
universal resonance curves for 2|Z,|/ V' R\R: for four different values
of b, namely b = 2, 10, 50, and 200. In this chapter universal curves are
plotted for the two cases Q; = @Qi(b =2) and @, = (b= ©) as
discussed in Secs. 5-3 and 5-4.

By suitable transformation of the variables it is possible to provide a
single set of resonance curves that provide all the essential data for the
amplitude characteristic. If a new variable « and a new parameter 8
defined by

v _ w wo 1
o= e V(S-S e ”
_s2—3b
b= 1+ s?
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are introduced,! then Eq. (1) can be put in the form

'Z ‘ - 8 N R;Rg 1 R
12 /—*'*-——‘—1 + 62 (1 — 2ﬁuz + u“)“’

and if |Z1s] +/1 + s%/s VR, is plotted as a function of u for various
values of 8, the required resonance curves are obtained.

It may be poted in passing that these curves also give the amplitude
response of staggered pairs and negative feedback pairs if the parameters
are suitably redefined.

Equation {5} has not been used to plot universal resonance curves in
this chapter because the increased difficulty of interpreting the curves
outweighs the advantages gained from displaying the information on a
single family of curves, but Eq. () makes it clear that the shape, as
opposed to the scale of the amplitude response, is determined by the single
parameter (.

Critical and Transitional Coupling.—From Eq. (2) it may be seen that
the midband gain G, is given by

%)

w N Biflg 8
gozi_f:gggz_, (8)

which depends only upon the coupling index s and not upon the Q ratio p.
The value of k that, for fixed @’s, makes the gain G a maximum is called
the critical coefficient of coupling; and when k has this value, the circuit
is said to be critically coupled. From Eq. (6) the corresponding value of
s is

8§ = 1,

so that, when the circuit is critically coupled, the midband gain is

gm \/ RIRZ (7)

2

11t may be seen from Eq: (4) that as s? — « (the overcoupled case), 8 — 1for all b,
that is, for all @ ratios. As s% — 0 (the undercoupled case), however, 8 — —3b, which
does depend on the Q-ratio. The explanation for this issimple. Ask, and therefore s,
tends to zero the seleetivity curve approaches that of the product of the two single-
tuned circuits whose @'s are the primary and secondary @’s respectively. In the
equal-Q case this selectivity curve is the product of the selectivity curves of two single-
tuned circuits with the same @, and it is not possible to get a sharper response curve
than this. In the unequal-Q case the selectivity curve can become much sharper; if
the product of the @’s is kept constant, ther when one of the @’s is infinite, the over-all
bandwidth is zero. In this chapter attention is confined to the case —1 2 8 51,
because cases where 8 < ~1 are of little practical interest.
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and the coeflicient of coupling is

1 . - 1 1
k = ———= = geometrical mean of - and ~- )
Vo g, ®
Equation (7) gives the maximum attainable value for the midband

gain.

In practice it is customary to use not that value of % which gives
maximum midband gain but instead that value which gives the flattest
selectivity curve. From Eq. (2) the corresponding value of s is given by

st = _fb) (9\)
since in this case
d|212| _ d2|Z12| _ d3|Z12| _

dv dv? dv3 0

when v = 0. When Eq. (9) is satisfied, the circuit is said to be iransi-
tionally coupled, because if the coupling coefficient is increased beyond the
transitional value, the curve has two peaks, whereas for values of k below
transitional the curve has a single peak. The transitional value of the
coupling coefficient is

1 b if1 1\ 1 1 .
k=—-——Q1_Q2\/;— §<@+@>—rmsof@and§; (10

When the @’s are equal, b = 2, and transitional and critical coupling
coincide. For all other values of @, however, transitional coupling is
greater than critical, since the rms of two unequal quantities is greater
than the geometric mean.

The bandwidth ® between 3-db points in the transitionally coupled
case, as determined from Eq. (3), is

_ V14 s? . ar
2r \% Clcz \/RTIE )

Gain-bandwidth Factor.—It has been shown above that the general
shape of the selectivity curve depends only upon a single parameter 8.
defined by Eq. (4). Accordingly when comparing circuits with different
Q-ratios but with the same values of 8 (that is, the same peak to midband
ratios) and the same bandwidths, it is sufficient to compare the midband
gains. The ratio of the responses at midband is then equal to the ratio
of the responses at any other frequency. A more general basis of com-
parison is given by the ratio of the produet of midband gain and band-
width when the circuits have the same values of 3. Because of the
simplicity of the resulting expressions, the bandwidth is usually taken
at the half-power points. The product of midband gain and bandwidth

®
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is, in this case, called the “gain-bandwidth product” of the circuit. In
the important case of transitional coupling, this gain-bandwidth produect
ig given by

_ gm 2s

T 224/Ci0 VI &

where s? = b = $(Q./Q: + Q:/Q)).
Now gn/(222 +/C,C,) is the gain-bandwidth product of a single-tuned
circuit if a tapped coil is used to match the plate capacity to the grid

@ (12)

-
/

T

/

N

Gain-bandwidth factor

™~
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14
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14 =QI/Q2
Fra. 5-2.—Gain-bandwidth factor of transitionally coupled double-tuned circuit as function
of Q-ratio.

capacity, thus a convenient dimensionless figure of merit is the so-called
‘“gain-bandwidth factor,” the ratio of the gain-bandwidth product
of the particular coupling circuit to the gain-bandwidth product of a
single-tuned coupling circuit. On this basis the gain-bandwidth factor
for a single-tuned circuit is unity and for a transitionally coupled double-
tuned circuit is
2s

Vits
where s is given by Eq. (2). If sis eliminated between Eqgs. (2) and (13),
the gain-bandwidth factor can be shown to be equal to

(13)
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2 /T T 3
N 14

When p = 1, the equal-Q case, the gain-bandwidth factor is 4/2; as
p tends to infinity, this factor increases monotonically to 2. Expression
(14) is plotted as a function of p in Fig. 5-2.

When the coupling is not transitional, the expression for the band-
width is complicated and the general expression for the gain-bandwidth
product will not be computed. It is easy, however, to compare the
effect of different Q-ratios on midband gain of circuits having the same
shape index 8 and the same bandwidth.

The midband gain in the general case is

mS ‘\/Rsz @4«&
S ="Tre (15) ¢ g
£
The shape index 8 is assumed constant where Lo .
s+ 1 ), » )
and since the bandwidth is also assumed constant, it is necessary that 5-. )
_ Q0 £
2

be constant, as may be seen from Egs. (4) and (5). =
From Egs. (15), (16), and (17) it can be shown that .
voou 3
B+3b 4
gm‘y A
Go = 18 ')
2nfo VC (1 +5 b) ( ) 3
It has been shown above that g is never greater than unity, so thg,t 3
Go increases monotonically with 6. When $b = 1, the equal-Q case( T j
Go = gmY (1 + B) , g /4 g
21I'fo vV C1C2 2 M grg;“‘h-

and when Q; is infinite, so that 3b = o,

gmY

8 = onfo VC.Or

The ratio of the midband gain in the two cases is simply

14
(1 ;3) . (19)

For strongly overcoupled circuits, where 8 ~ 1, Expression (19)
shows that the unequal-@ case gives no larger gain than the equal-@ case.
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For very weakly coupled circuits, on the other hand, where 8 = —1, the
unequal-Q circuit has a considerable advantage.® At transitional
coupling, where § = 0, the ratio is 1/+/2, a result already obtained above.

The increased gain-bandwidth factor offered by the unequal-@
transitionally coupled case is not obtained without having to pay a con-
siderable price, for it will now be shown that the amplitude response
of the unequal-Q coupling is liable to develop serious asymmetry under
conditions of slight mistuning.

The Effect of Mistuning.—If the secondary circuit is mistuned from
midband by an amount +Af, where Af is small, then from Eq. (116) in
Aijken the transfer impedance can be written

e s VEE;
[(1 + 82 + o) + W3 — 2) + 20w (@f - g—:)

b 1%
- (s’ 4ok — §) + v4] . (20)
where wg = /Q1Q: Af/fo.

It will be noted that there is now a term in the first power of » in the
denominator, so that the resonance curve is asymmetrical unless @, = Q,.
The greater the @-ratio the more serious is the asymmetry produced by
mistuning.

Aiken gives a number of curves illustrating the magnitude of this
effect in particular cases.

Variation of k with Q-ratic When the Bandwidth Is Fized.—Another
feature of the unequal-@Q case, which may prove undesirable, is that the
coefficient of coupling required for a given fractional bandwidth increases
with the Q-ratio, according to the same law as does the gain-bandwidth
factor.. From Eq. (11}

® k+/1+¢

-8

go that k = (®/fo)(s//1 + s?), which, but for the factor ®/(2f,), is
equal to the gain-bandwidth factor given by Eq. (13). Accordingly as p
increases from 1 to «, k increases monotonically from ®/(fo v/2) to ®/fo.

Despite the more critical dependence upon tuning and the larger
coefficient of coupling, the unequal-@Q coupling has a number of important
applications, particularly as an interstage coupling circuit in wide-band
amplifiers where the greater gain-bandwidth factor is important and as
the input network of an amplifier where the addition of extra resistance
(to equalize the primary and secondary @’s) would make the noise figure
seriously worse. :

t See footnote to Eq. (4).
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In these applications it is usually desirable to make the @-ratio as high
as possible. Hence the special case where one of the @’s is infinite is
discussed in Sec. 5-4. The equal-Q case is discussed in Sec. 5-3.

Gain-bandwidth Factor of an n-stage Amplifier—The gain-bandwidth
factor of an n-stage amplifier is defined as 2r2 A/CiC:/gn times the
product of the over-all 3-db bandwidth and the mean stage gain. For
the transitionally coupled double-tuned circuit the ratio of over-all 3-db
bandwidth to 3-db bandwidth of a single stage is

(In2)% 1 |
% 1in#

(2 = 1) =

the approximate expression is very accurate for large n and is within
10 per cent of the correct value even for n = 2.

Accordingly the gain-bandwidth product of an n-stage transitionally
coupled double-tuned circuit is

Gm 2s
2i/m — )%
212 A/C1C: /1 + 2 ( " (21)

and the gain-bandwidth factor is

2s e 2s 1
\/1+s2(2 V= e L

where s is given in terms of the @-ratio by Eq. (9).
The Driving-point Admiltance—A quantity of particular importance
in noise-figure calculations is the driving point admittance Y defined by

Yu—%l

(22)

Aiken has shown that

y (1+sz—v2)—}—]v\/b+2
11 =

v (1+iG)

which can be expressed as the sum of a conductance G1; and a susceptance
B1,, where

(23)

(1 +S2) +%Z}2 ) §
Gu = —*——2— =—+_'——.T’
R TR (%)
a; 0 (24)
R [1+Q2+v2—<1+s2>]
U_Rl 1 Qav?

&
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The absolute value of Y is given by

b 14
1 [(1 + 5%)% — 2(32 — 5) v? + v{l
IY 1| =7 P (25)
! R, (1 + Quw )%
@1
S sR, s 26)
N TAIR [1 +Q (E, - f) ]

the absolute value of the primary driving-point admittance is thus equal
to s//R:R: times th