

Technische Daten

SUDDEUTSCHE TELEFON-APPARATE-, KABEL- UND DRAHTWERKE A.-G. TEKA DE TELEFON 4901 SCHLIESSFACH 870

INHALT

Erklärung der in den Tabellen benutzter	Symbole		Seite 4 und 5
---	---------	--	---------------

Technische Daten:

Туре	Seite	Туре	Seite	Туре	Seite
AB 2	6	CF3	9	DL 94	, 14
ABC 1		CF 7			
AC 2	6	CL4	10	EABC 80	. 15
AF3	6	CY1	10	EAF 42	. 15
AF7	6	CY 2	10	EB 41	. 16
AK 2	7			EBC 41	. 16
AL4	7			EBF 11	. 16
AZ1	7	DAF 91	11	EBF 80	. 17
AZ 11	8	DF 91	11	EBL 1	. 17
AZ 12	8	DK 40	12	EC 92	. 18
AZ 41	8	DK 91	12	ECC 40	. 18
		DK 92	13	ECC 81	. 18
		DL 41	13	ECC 82	. 19
CBL1	9	DL 92	14	ECH 3	. 19

Technische Daten:

Туре	Seite	Туре	Seite	Туре	Seite
ECH 4	19	EL 12	27	PL 83	34
ECH 11	20	EL 12/325	27	PY 80	35
ECH 21	20	EL 12/375	27	PY 81	35
ECH 42	21	EL 34	28	PY 82	35
ECH 43	21	EL 41	29		
ECH 81	21	EL 42	29		
ECL 11	22	EL 84	30	RE 134	36
ECL 80	22	EM 4	30	RES 164	36
EF9	23	EM 34	30	RES 964	36
EF 11	23	EQ 80	31	REN 904	36
EF 12	24	EY 51	31	RENS 1284	36
EF 40	24	EZ 12	31	RENS 1294	37
EF 41	24	EZ 40	32	RENS 1374d	37
EF 42	25	EZ 80	32	RGN 354	37
EF 43	25			RGN 1064	37
EF 80	25				
EF 85	25	PABC 80	33		
EFM 11	26	PCC 84	33	UABC 80	38
EL3N	26	PL 81	34	UAF 42	38
EL 11	26	PL 82	34	UBC 41	39

Technische Daten:

Type Seite	Туре	Seite	Туре	Seite
UBF 11	UF 5	45	UY 11	48
UBF 80 40	UF 6	45	UY 21	49
UBL 3 40	UF 41	46	UY 41	49
UBL 21 41	UF 42	46		
UC 92 41	UF 43	46		
UCH 5 42	UF 80	46	'	
UCH 11 42	UF 85	47	VC1	50
UCH 21 43	UL 2	47	VCL 11	50
UCH 42 43	UL 41	47	VF 7	50
UCH 43 44	UM 4	47	VL1	51
UCH 81 44	UQ 80	48	VY 1	51
UCL 11 44	UY 3	48	VY 2	51

Erklärung der in den Tabellen benutzten Symbole:

E in der Spalte Bemerkungen bezeichnet die für Erstbestückung empfohlenen Röhren
N die nur für Nachbestückung vorgesehenen Röhren
V bedeutet, daß vorläufige Daten angegeben sind

 Symbole für Elektroden (auch als Index für Elektrodenspannungen, Ströme, Impe- danzen) 		Ungleichwertige Elektroden mit gleichem Kennbuchstaben werden durch Hinzufügen von Ziffern unterschieden, z.B.	g ₁ u.g ₂
Anode einer Diode Hilfsanode Ablenkplatte oder Ablenksteg Heizfaden Heizfadenanzapfung Gitter Sekundäremissionskatode Elektrodenanschluß, der zu keinem Zweck	d 2 ah D f f g	Symbole für Elektrodensysteme (auch als Index für Elektrodenspannungen, Ströme, Impedanzen) Triode	Q P H
angeschlossen werden darf (innere Verbindung)	k ke ka I m	Symbole für Spannungen Bogenspannung	Ucontr Uf Ui Uign Uinv Uosc Up

	Sekundärspannung eines Transformators (unbelastet)	Utr	7. Symbole für Widerstände (Beispiele) Spannungsteiler für Ug2 oder Ug3+g4 (Index 1 für positive Seite)	
4.	Symbole für Ströme Gleichstrom eines Gleichrichters Scheitelstrom	· .	stand in einer Anodenleitung	
	Stabilisierter Strom eines Stromreglers .		verstärkers (zwischen den beiden Anoden) Äquivalenter Rauschwiderstand	
5.	Symbole für Leistungen Anodenverlustleistung	W g	Eingangswiderstand bei UKW Vorwiderstand in einer Gitterleitung oder Gitterableitwiderstand Gitterableitwiderstand der folgenden Röhre	Rg
6.	Symbole für Kapazitäten (Beispiele) Kapazität Anode gegen alles mit Ausnahme des Steuergitters		Innerer Widerstand	Ri Rk
	Kapazität zwischen Anode und Katode (alle Elektroden und Schirme, die nicht mit der Katode verbunden sind, sind geerdet) Kapazität des Ladekondensators Kapazität Gitter gegen alles mit Aus-	Cak Cfilt	B. Symbole verschiedener Größen Gesamt-Verzerrungsfaktor Frequenz Spannungsverstärkung Šteilheit Mischsteilheit Schattensektor einer Abstimmanzeigeröhr Wellenlänge	g S Sc e a
	Napazität zwischen Gitter und Katode (alle Elektroden und Schirme, die nicht mit der Katode verbunden sind, sind geerdet)		Leerlaufverstärkung	$egin{array}{c} oldsymbol{\mu} \ oldsymbol{g} \ oldsymbol{a} \ < \ oldsymbol{b} \ \end{array}$

-

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
AB 2 für HF-Gleichrichter, AM-Demodulator- stufen	Uf = 4 V If = 0,65 A Indirekt				Udp = 200 V Id = 0,8 mA Ufk = 50 V	72	N
ABC 1 für NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 4 V If = 0,65 A indirekt	Statische Daten: Ua = 250 V Ug = -7 V	la = 4	S = 2 mA/V μ = 27 Ri = 13,5 kΩ	Wa = 1,5W lk = 10 mA Rg = 1,5 MΩ Ufk = 50 V Udp = 200 V ld = 0,8 mA	42	N
ABL 1 für Endverstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 4 V If = 2,4 A indirekt	Klasse A: Ua = 250 V Ra = 7 kΩ Ug ₂ = 250 V Rk = 150 Ω Ui = 4,2 Veff	la = 36 lg ₂ = 4	S = 9 mA/V Ri = 50 kΩ W ₀ = 4,5 W dtot = 10%	Wa = 9 W Wg ₂ = 1,2 W Ik = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V Udp = 200 V Id = 0,8 mA	43	N
AC 2 für NF-Verstärker	Uf = 4 V If = 0,65 A Indirekt	Statische Daten: Ua = 250 V Ug =5,5 V	la == 6	S = 2.5 mA/V μ = 30 $R_i = 12 \text{ k}Ω$	Wa = 2 W Ik = 10 mA Rg = 1,5 MΩ Ufk = 50 V	44	N
AF 3 für regelbare HF-Verstärker	Uf = 4 V If = 0,65 A indirekt	$U_{g_3} = 250 \text{ V}$ $U_{g_3} = 0 \text{ V}$ $U_{g_2} = 100 \text{ V}$ $U_{g_1} = -3 \text{ V}$ $U_{g_1} = -55 \text{ V}$	la = 8 lg ₂ = 2,6	$Cag_1 < 0,003 pF$ $S = 1,8 mA/V$ $Ri = 1,2 MΩ$ $S < 2 μA/V$ $Ri > 10MΩ$	$W_{g_2} = 2 W$ $W_{g_2} = 0.4 W$ $I_k = 15 mA$ $R_{g_1} = 2.5 M\Omega$ $U_{fk} = 80 V$	45	N
AF 7 für HF-Verstärker	Uf = 4 V If = 0,65 A indirekt	$U_{g_3} = 250 \text{ V}$ $U_{g_2} = 0 \text{ V}$ $U_{g_2} = 100 \text{ V}$ $U_{g_1} = -2 \text{ V}$	la = 3 lg ₂ = 1,1	$C_{ag_1} < 0,003 pF$ S = 2,1 mA/V $R_i = 2 M\Omega$	$W_{g_2} = 1 W$ $W_{g_2} = 0.3 W$ $I_k = 6 mA$ $R_{g_1} = 1.5 M\Omega$ $U_{fk} = 50 V$	45	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
AK 2 für regelbare Mischstufen	Uf = 4 V If = 0,65 A Indirekt		la = 1,6 g ₃ +g ₅ = 3,8 g ₂ = 2,0 eschlossen		$W_{g_3} + g_5 = 0.5 W$ $W_{g_2} + g_5 = 0.3 W$ $V_{g_2} = 0.3 W$ $V_{g_3} + g_5 = 0.3 W$ $V_{g_4} = 10 MA$ $V_{g_4} = 10 M\Omega$ $V_{g_4} = 100 M\Omega$ $V_{g_5} = 100 M\Omega$ $V_{g_5} = 100 M\Omega$ $V_{g_5} = 100 M\Omega$	46	N
AL 4 für Endverstärker	Uf = 4 V If = 1,75 A indirekt	$U_i = 6.7 \text{ Veff}$ $U_i = 0 \text{ V}$	$ a = 36$ $ g_2 = 4$ in Gegentakt: $ a = 2 \times 28,5$ $ g_2 = 2 \times 4,6$ $ a = 2 \times 24$ $ g_2 = 2 \times 2,8$	$S = 9 \text{ mA/V}$ $Ri = 50 \text{ k}\Omega$ $W_0 = 4.5 \text{ W}$ $dtot = 10\%$ $W_0 = 8.2 \text{ W}$ $dtot = 3.1\%$	Wa = 9 W Wg ₂ = 1,2 W Ik = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V	48	N
AZ 1 für Zweiweg-Gleichrichter	Uf = 4 V If = 1,1 A direkt	Utr = 2×500 Veff Utr = 2×400 Veff Utr = 2×300 Veff			$I_0 = 60 \text{ mA}$ $Rt = \min.2 \times 100 \Omega$ $I_0 = 75 \text{ mA}$ $Rt = \min.2 \times 80 \Omega$ $I_0 = 100 \text{ mA}$ $Rt = \min.2 \times 60 \Omega$ $Cfilt = 60 \mu\text{F}$ für alle Spannungen $Utr = 2 \times 500 \text{ Veff}$	49	E

.

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
		Utr = 2×500 Veff			$I_0 = 60 \text{ mA}$ $Rt = \min.2 \times 100\Omega$		
AZ 11	Uf == 4 V	Utr = 2×400 Veff			i ₀ = 75 mA Rt = min.2×80 Ω	· -	
für Zweiweg-Gleichrichter	If = 1,1 A	Utr = $2 \times 300 \text{ Veff}$			$I_0 = 100 \text{ mA}$ $R^1 = \min.2 \times 60 \Omega$	63	E
					Cfilt = 60μ F für alle Spannungen		
					Utr = $2 \times 500 \text{ Veff}$		
		Utr = 2×500 Veff			I ₀ = 120 mA Rt = min.2×100Ω	2	
AZ 12	Uf = 4 V	Utr = 2×400 Veff			l ₀ = 150 mA Rt = min.2×80 Ω		
für Zweiweg-Gleichrichter	If == 2,3 A direkt	Utr = 2×300 Veff			$I_0 = 200 \text{ mA}$ $Rt = \min.2 \times 60 \Omega$		E
					Cfilt = 60μ F für alle Spannungen		
					$U_{tr} = 2 \times 500 \text{ Veff}$		
		Utr = 2×500 Veff			$l_0 = 60 \text{ mA}$ $Rt = \min.2 \times 200\Omega$,	
AZ 41	Uf = 4 V	Utr = 2×400 Veff			I ₀ = 60 mA Rt = min.2×150Ω		
für Zweiweg-Gleichrichter		Utr = 2×300 Veff			$I_0 = 70 \text{ mA}$ $Rt = \min.2 \times 100\Omega$	1	E
					Cfilt = $50 \mu F$ für alle Spannungen		
			i .		$Uur = 2 \times 500 \text{ Veff}$		

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
für Findverstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 44 V If = 0,2 A indirekt	Klasse A: Ua = 200 V Ra = 4,5 k Ω Ug ₂ = 200 V Rk = 170 Ω Ui = 5 Veff	$l_{a} = 45$ $l_{g_{2}} = 6$	$S = 8 \text{ mA/V}$ $R_i = 40 \text{ k}\Omega$ $W_0 = 4 \text{ W}$ $dtot = 10\%$	Wa = 9 W Wg ₂ = 1,2 W lk = 70 mA Rg ₁ = 1 MΩ Ufk = 175 V Udp = 200 V Id = 0,8 mA	43	N
CF 3 für regelbare HF-Verstärker	Uf = 13 V If = 0,2 A indirekt	$U_{g_3} = 200 \text{ V}$ $U_{g_3} = 0 \text{ V}$ $U_{g_2} = 60 \text{ V}$ $U_{g_1} = -2 \text{ V}$ $U_{g_1} = -35 \text{ V}$	la = 4 lg ₂ = 1,3	$C_{ag_1} < 0,003 \text{ pF}$ $S = 1,5 \text{ mA/V}$ $R_i = 1,3 \text{ M}\Omega$ $S < 2 \mu\text{A/V}$ $R_i > 10 \text{ M}\Omega$	$W_{g_2} = 2 W$ $W_{g_2} = 0.4 W$ $I_k = 15 mA$ $R_{g_1} = 2.5 M\Omega$ $U_{fk} = 125 V$	45	N
CF 7 für HF- und NF-Verstärker	Uf = 13 V If = 0,2 A Indirekt	$\begin{array}{lll} \text{HF-Verstärker:} \\ \text{Ua} &=& 250 \text{ V} \\ \text{Ug}_3 &=& 0 \text{ V} \\ \text{Ug}_2 &=& 100 \text{ V} \\ \text{Ug}_1 &=& -2 \text{ V} \\ \end{array}$ $\begin{array}{lll} \text{NF-Verstärker:} \\ \text{Ub} &=& 200 \text{ V} \\ \text{Ra} &=& 0.32 \text{ M}\Omega \\ \text{Rg}_2 &=& 0.5 \text{ M}\Omega \\ \text{Rk} &=& 6.4 \text{ k}\Omega \end{array}$	$ a = 3$ $ g_2 = 1,1$ $ a = 0,42$ $ g_2 = 0,16$	I	Wa = 1 W Wg ₂ = 0,3 W Ik = 6 mA Rg ₁ = 1,5 MΩ ¹) Rg ₁ = 1 MΩ ²) Ufk = 125 V 1) Autom. Vorspg. 2) Feste Vorspg.	45	N
CK 1 für regelbare Mischstufen	Uf = 13 V If = 0,2 A indirekt	$U_{g_3} + g_5 = 70 \text{ V}$ $U_{g_2} = 90 \text{ V}$ $U_{osc(g_1)} = 8,5 \text{ Veff}$ $R_{g_1} = 50 \text{ k}\Omega^1$ $R_k = 250 \Omega$ $U_{g_4} = -1,5 \text{ V}$ $U_{g_4} = -25 \text{ V}$	a = 1,6 $ g_3+g_5 = 3,8$	$Cag_4 < 0.06 pF$ $Cg_1g_4 < 0.35 pF$ $Sc = 600 μA/V$ $Ri = 1.5 MΩ$ $Sc = 1 μA/V$ $Ri < 10 MΩ$	$W_{g_3} + g_5 = 0.5 W$ $W_{g_3} + g_5 = 0.3 W$ $W_{g_2} = 0.3 W$ $W_{g_3} = 0.3 W$ $W_{g_4} = 100 MA$ $W_{g_4} = 100 MA$ $W_{g_4} = 100 MA$ $W_{g_5} = 100 MA$ $W_{g_6} = 100 MA$ $W_{$	46	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
CL 4 für Endverstärker	Uf = 33 V If = 0,2 A Indirekt	Klasse A (nur für auf Ua = 200 V Ra = 4,5 kΩ Ug ₂ = 200 V Rk = 167 Ω Ui = 5 Veff Klasse AB, 2 Röhren Ua = 200 V Raa' = 4,5 kΩ Ug ₂ = 200 V Rk = 135 Ω Ui = 14,1 Veff Ui = 0 V	la = 45 lg ₂ = 6 in Gegentakt: la = 2 × 40	dtot = 2,5%	Wa = 9 W Wg ₂ = 2 W Ik = 70 mA Rg ₁ = 1 MΩ Ufk = 175 V	47	N
CY 1 für Einweg-Gleichrichter	Uf = 20 V If = 0,2 A indirekt	Utr = 250 Veff Utr = 170 Veff Utr = 127 Veff			$I_0 = 80 \text{ mA}$ $R_t = \text{min.} 125\Omega$ $I_0 = 80 \text{ mA}$ $R_t = \text{min.} 75 \Omega$ $I_0 = 80 \text{ mA}$ $R_t = 0 \Omega$ $C = 32 \mu F$ $U = 250 \text{ Veff}$ $U = 450 \text{ Veff}$	· ·	N
CY 2 für Einweg-Gleichrichter, Spannungsverdoppler	Uf = 30 V If = 0,2 A indirekt	Einweg-Gleichrichter Utr = 250 Veff Utr = 170 Veff Utr = 127 Veff Spannungsverdoppler Utr = 127 Veff		nden, Kathoden verbung	I_0 = 120 mA R_t = min.125 Ω I_0 = 120 mA R_t = min. 75 Ω I_0 = 120 mA R_t = 0 Ω C_{filt} = 32 μ F U_{tr} = 250 Veff I_0 = 60 mA R_t = 0 Ω C_{filt} = 32 μ F U_{tr} = 127 Veff U_{fkp} = 450 V	•	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
HF-Gleichrichter		NF-Verstärker: Ub = 45 V Ra = 1 M Ω Rg* = 2,2 M Ω Rg ₂ = 3,3 M Ω Rg ₁ = 10 M Ω ¹)	$a+lg_2=50\mu A$	U ₀ = 5 Veff g = 45 dtot = 2%	$W_{g_2} = 0.25 W$ $W_{g_2} = 50 mW$ $I_k = 4.5 mA$ $R_{g_1} = 3 M\Omega$ $R_{g_1} = 22 M\Omega^1$	35	E
	It = 50 mA	³) Rg1 an —f angescl	hlossen				
	direkt	$U_{b} = 90 \text{ V}$ $R_{a} = 1 \text{ M}\Omega$ $R_{g}^{*} = 2,2 \text{ M}\Omega$ $R_{g_{2}} = 4,7 \text{ M}\Omega$ $R_{g_{1}} = 10 \text{ M}\Omega^{1}$)	la+lg ₂ =90μA	U ₀ = 5 Veff g = 75 dtot = 2%	Ud invp = 100 V Id = 0,2 mA		
		Statische Daten: Ua = 90 V Ug ₂ = 90 V Ug ₁ = 0 V	$l_{g_2} = 2,7$ $l_{g_2} = 0,5$	$S = 720 \mu\text{A/V}$ $R_i = 0.5 \text{M}\Omega$	¹) Rg1 an —f Vorspg. nur durch Rg1		; ; ; ;
		Ua = 90 V Ug ₂ = 67,5 V Ug ₁ = 0 V	la = 3,5 lg ₂ = 1,4	$Cag_1 < 0.01 pF$ $S = 900 \mu A/V$ $Ri = 0.5 M\Omega$ $raeq = 19 k\Omega$			
DF 91 für regelbare	Uf = 1,4 V If = 50 mA direkt	Ug ₁ = -16 V		$S = 10 \mu A/V$ Ri > 10 M Ω	$W_{g_2} = 0.35 W$ $W_{g_2} = 0.11 W$	36	E
HF-Verstärker	WII GRL	$U_{g_{2}} = 45 \text{ V}$ $U_{g_{2}} = 45 \text{ V}$ $U_{g_{1}} = 0 \text{ V}$	la = 1,7 lg ₂ = 0,7	$S = 700 \mu A/V$ Ri = 0,35 M Ω	$R_{g_1} = 5.5 \text{ mA}$ $R_{g_1} = 3 \text{ M}\Omega$		
•	!	Ug ₁ = -10 V		$S = 10 \mu A/V$ $Ri > 10 M\Omega$			

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
DK 40 für regelbare Mischstufen	Uf == 1,4 V If == 50 mA direkt	Ub = Ua = 67,5 V Ug ₅ = Ug ₂ =67,5 V Uosc(g ₁ +g ₈)=8 Veff Rg ₁ +g ₈ = 35 kΩ ¹) Ug ₄ = 0 V Ug ₄ = -9,5 V Ub = Ua=135 V Rg ₅ = 0,27 MΩ Rg ₂ = 26 kΩ Uosc(g ₁ +g ₃)=8 Veff Rg ₁ +g ₈ =35kΩ ¹) Ug ₄ = 0 V Ug ₄ = -18,5 V 1) Rg1+g3 an +f ange	$l_{g_{\delta}} = 1.0$ $l_{g_{\delta}} = 0.25$ $l_{g_{\delta}} = 0.25$ $l_{g_{\delta}} = 0.25$ $l_{g_{\delta}} = 2.6$	raeq = 67 k Ω Sc = 4,2 μ A/V Ri > 10 M Ω	$W_{g_5} = 0.2 W$ $W_{g_2} = 0.2 W$ $W_{g_2} = 0.2 W$ $W_{g_3} = 5 mA$ $R_{g_4} = 3 M\Omega$ $R_{g_1+g_3} = 35 k\Omega^1$	2	N
DK 91 für regelbare Mischstufen	Uf = 1,4 V If = 50 mA direkt	$Ub=Ua = 90 V$ $Ug_{2}+g_{4} = 67,5 V$ $Uosc(g_{1}) = 23 Veff$ $Rg_{1} = 0,1 MΩ$ $Ug_{3} = 0 V$ $Ug_{3} = -14 V$ $Ub=Ua = 90 V$ $Ug_{2}+g_{4} = 45 V$ $Uosc(g_{1}) = 16 Veff$ $Rg_{1} = 0,1 MΩ$ $Ug_{3} = 0 V$ $Ug_{3} = -9 V$	la =1,6 lg ₂ +g ₄ =3,2	$C_{ag_3} < 0.4 \text{ pF}$ $C_{g_1g_3} < 0.2 \text{ pF}$ $S_c = 300 \mu \text{A/V}$ $R_i = 0.6 \text{ M}\Omega$ $r_{aeq} = 195 \text{ k}\Omega$ $S_c = 5 \mu \text{A/V}$ $R_i > 10 \text{ M}\Omega$ $S_c = 5 \mu \text{A/V}$ $R_i = 0.8 \text{ M}\Omega$ $S_c = 5 \mu \text{A/V}$ $R_i = 0.8 \text{ M}\Omega$	Wa = 0,15 W Wg ₂ +g ₄ =0,25W Ik = 5,5 mA Rg ₃ = 3 MΩ	37	E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
DK 92 für regelbare Mischstufen	Uf = 1,4 V If = 50 mA direkt	$U_{b} = U_{a} = 85 \text{ V}$ $R_{g_{4}} = 0,18\text{M}Ω$ $R_{g_{2}} = 33 \text{ k}Ω$ $U_{osc(g_{1})} = 4 \text{ Veff}$ $R_{g_{1}} = 27 \text{ k}Ω^{1})$ $U_{g_{3}} = 0 \text{ V}$ $U_{g_{3}} = -6 \text{ V}$ $U_{g_{4}} = 0 \text{ k}Ω$ $R_{g_{2}} = 22 \text{ k}Ω$ $U_{osc(g_{1})} = 4 \text{ Veff}$ $R_{g_{1}} = 27 \text{ k}Ω^{1})$ $U_{g_{3}} = 0 \text{ V}$ $U_{g_{3}} = -4 \text{ V}$	$l_{g_4} = 0,65$ $l_{g_4} = 0,14$ $l_{g_2} = 1,65$ $l_{g_4} = 0,15$ $l_{g_2} = 1,55$	Ri = 1,0 MΩ $Sc = 3,25 \mu A/V$ $Sc = 300 \mu A/V$	$W_{g_4} = 0.2 W$ $W_{g_2} = 0.2 W$ $I_k = 4 mA$ $R_{g_3} = 3 M\Omega$ $R_{g_1} = 35 k\Omega^1$	38	EV
DL 41 für Endverstärker	Uf = 1,4 V If = 0,1 A oder Uf = 1,4 V I1 = 50 mA oder Uf = 2,8 V If = 50 mA direkt	Klasse A, Uf = 1,4 \ Ua = 120 V Ra = 12 kΩ Ug ₂ = 120 V Ug ₁ = $-5,6$ V Ui = 3,8 Veff Klasse B, 2 Röhren in If = 100 mA; Stifte 1- Ua = 150 V Raa' = 15 kΩ Ug ₂ = 150 V Ug ₁ = $-13,2$ V Ui = 10,6 Veff Ui = 0 V	la == 10 lg ₂ == 1,65 Gegentakt, Uf - (7+8): la ==2×11,5	$S = 2,55 \text{ mA/V}$ $R_i = 80 \text{ k}\Omega$ $W_0 = 0,55 \text{ W}$ $d \cot = 10\%$ $= 1,4 \text{ V};$ $d \cot = 5\%$	Wa = 1,2 W Wg ₂ = 0,3 W Ik = 7 mA ¹) Ik = 16 mA ²) Rg ₁ = 2 MΩ 1) 1 Heizfaden eingeschaltet 2) 2 Heizfäden eingeschaltet	3	· N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
DL 92 für Endverstärker	Uf = 1,4 V If = 0,1 A oder Uf = 1,4 V If = 50 mA oder Uf = 2,8 V If = 50 mA direkt	· ·	a = 7,4 g ₂ = 1,4 Gegentakt, Uf Stifte 5— (1+7)	$S = 1.57 \text{ mA/V}$ $Ri = 0.1 \text{ M}\Omega$ $W_0 = 0.27 \text{ W}$ $dtot = 12\%$ $= 1.4 \text{ V}; \text{ if } = 0.1 \text{ A};$	Wa = 0,7 W Wg ₂ == 0,15 W Ik == 11 mA Rg ₁ = 2 MΩ	39	N
DL 94 für Endverstärker	Uf = 1,4 V If = 0,1 A oder Uf = 2,8 V If = 50 mA oder Uf = 1,4 V If = 50 mA direkt	$U_a = 120 \text{ V}$ $R_{aa'} = 14 \text{ k}\Omega$ $U_{g_2} = 120 \text{ V}$ $U_{g_1} = -8,2 \text{ V}$ $U_i = 6,9 \text{ Veff}$	Ia = 8 Ig ₂ = 1,8 Gegentakt, Uf = Stifte 1—7: Ia = 2 × 1,8 Gegentakt, Uf = Stifte 1—7: Ia = 2 × 11,5 Ia = 2 × 1	$S = 2 \text{ mA/V}$ $Ri = 0,11 \text{ M}\Omega$ $W_0 = 0,34 \text{ W}$ $dtot = 12\%$ $2,8 \text{ V}; \text{ If } = 2 \times 50 \text{ mA};$ $W_0 = 1,2 \text{ W}$ $dtot = 10\%$ $= 2,8 \text{ V}; \text{ If } = 2 \times 50 \text{ mA};$ $W_0 = 2 \text{ W}$ $dtot = 4,5\%$	Wa = 1,2 W Wg ₂ = 0,45 W ¹) k = 6 mA ¹) je Fadenhälfte Rg ₁ = 1 MΩ The image is a signal in the stantant of the signal in the signal	1	EV

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EABC 80 für AM/FM- Demodulatorstufen, NF-Verstärker	Uf = 6,3 V If = 0,45 A Indirekt	Triodenteil, statische $U_a = 250 \text{ V}$ $U_g = -3 \text{ V}$ $U_a = 100 \text{ V}$ $U_g = -1 \text{ V}$ Diodenteil, statische $U_1 = 10 \text{ V}$ $U_2 = 5 \text{ V}$ $U_3 = 5 \text{ V}$ $U_3 = 5 \text{ V}$	la = 1 a = 0,8	S = 1.2 mA/V $\mu = 70$ $R_i = 58 \text{ k}\Omega$ S = 1.4 mA/V $\mu = 70$ $R_i = 50 \text{ k}\Omega$ $R_{i_2} \simeq 200 \Omega$ $R_{i_3} \simeq 200 \Omega$	WaT = 1 W k = 5 mA Rg = 3 MΩ Rg = 22 MΩ¹) ¹) Rk = 0 Vorspg. nur durch Rg Ufk = 150 V Ud ₁ inv p=Ud ₂ inv p =Ud ₃ inv p=350 V d ₁ = 1 mA d ₂ = d ₃ = 10 mA	28	EV
EAF 42 für regelbare HF- und NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 6,3 V If = 0,2 A Indirekt	HF-Verstärker: Ub=Ua = 250 V Ug ₃ = 0 V Rg ₂ = 110 kΩ Rk = 310 Ω Ug ₁ = -2 V Ug ₁ = -43 V NF-Verstärker: Ub = 250 V Ra = 0,22MΩ Rg* = 0,7 MΩ Ug ₃ = 0 V Rg ₂ = 0,82 MΩ Rg ₂ = 1,5 kΩ Ug ₁ = -1,6 V Ug ₁ = -20 V	la = 0,8	$Cag_1 < 0.002 pF$ $S = 2 mA/V$ $Ri = 1.4 M\Omega$ $raeq = 7.5 k\Omega$ $S = 20 \mu A/V$ $Ri > 10 M\Omega$ $dtot = 1\%$ $g = 11$ $dtot = 2.7\%$	Wa = 2 W Wg ₂ = 0,3 W lk = 10 mA Rg ₁ = 3 MΩ Ufk = 100 V Udp = 200 V ld = 0,8 mA	4	

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EB 41 für HF-Gleichrichter, AM/FM Demodulatorstufen	Uf = 6,3 V If = 0,3 A Indirekt		•	1) k: neg., f: pos. 2) k: pos., f: neg.	Ud inv p = 420 V Id = 9 mA Idp = 54 mA Ufk = 150 V ¹) Ufkp = 330 V ²)	5	E
EBC 41 für NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 6,3 V If = 0,23 A Indirekt	NF-Verstärker: Ub = 250 V Ra = 0,22 MΩ Rg* = 0,68 MΩ Rk = 1,8 kΩ Ub = 250 V Ra = 0,22 MΩ Rg* = 0,68 MΩ Rg* = 0,68 MΩ Rg = 22 MΩ¹) Statische Daten:	la = 0.7 $la = 0.76$	<u> </u>	Wa = 0,5 W k = 5 mA Rg = 3 MΩ Rg = 22 MΩ ¹) Ufk = 100 V Udp = 200 V d = 0,8 mA	6	E
		Ua = 250 V Ug = -3 V	la == 1,0	S = 1.2 mA/V $\mu = 70$ $Ri = 58 \text{ k}\Omega$	¹) Rk = 0 Vorspg. nur durch Rg		
EBF 11 für regelbare	Uf = 6,3 V If = 0,2 A	HF-Verstärker: Ub=Ua = 250 V Rg ₂ = 85 k Ω Rk = 300 Ω Ug ₁ = -2 V Ug ₁ = -41 V	la = 5 Ig ₂ = 1,8	$C_{ag_1} < 0.002 \text{ pF}$ $S = 1.8 \text{ mA/V}$ $R_i = 2 \text{ M}\Omega$ $S = 18 \mu\text{A/V}$ $R_i > 10 \text{ M}\Omega$	Wa = 1,5 W Wg ₂ = 0,3 W lk = 10 mA Rg ₁ = 3 MΩ	64	N
HF- und NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen		NF-Verstärker: Ub = 250 V Ra = 0,2 M Ω Rg ₂ = 0,8 M Ω Rk = 2 k Ω Ug ₁ = -2,1 V Ug ₁ = -25 V	la = 0,8 Ig ₂ = 0,24	U ₀ = 5 Veff g = 98 dtot = 1,3% g = 7 dtot = 3,7%	Ufk = 100 V Udp = 200 V Id = 0,8 mA		

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EBF 80 für regelbare HF- und NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 6,3 V If = 0,3 A Indirekt	$\begin{array}{lll} \text{HF-Verstärker:} \\ \text{Ub} = \text{Ua} = 250 \text{ V} \\ \text{Ug}_{8} &= 0 \text{ V} \\ \text{Rg}_{2} &= 95 \text{ k}\Omega \\ \text{Rk} &= 295 \Omega \\ \text{Ug}_{1} &= -2 \text{ V} \\ \\ \text{Ug}_{1} &= -41,5 \text{ V} \\ \\ \text{NF-Verstärker} \\ \text{Ub} &= 250 \text{ V} \\ \text{Ra} &= 0,22 \text{ M}\Omega \\ \text{Rg}^{*} &= 0,68 \text{ M}\Omega \\ \text{Ug}_{3} &= 0 \text{ V} \\ \text{Rg}_{2} &= 0,82 \text{ M}\Omega \\ \text{Rk} &= 1,8 \text{ k}\Omega \\ \\ \text{Ub} &= 250 \text{ V} \\ \text{Ra} &= 0,22 \text{ M}\Omega \\ \text{Rg}^{*} &= 0,68 \text{ M}\Omega \\ \text{Ug}_{3} &= 0 \text{ V} \\ \text{Rg}^{*} &= 0,68 \text{ M}\Omega \\ \text{Ug}_{3} &= 0 \text{ V} \\ \text{Rg}^{*} &= 0,68 \text{ M}\Omega \\ \text{Ug}_{3} &= 0 \text{ V} \\ \text{Rg}_{2} &= 1 \text{ M}\Omega \\ \text{Rg}_{2} &= 1 \text{ M}\Omega \\ \text{Rg}_{1} &= 10 \text{ M}\Omega^{1} \end{array} \right)$	$l_{a} = 5$ $l_{g_{2}} = 0.75$ $l_{g_{2}} = 0.75$ $l_{g_{2}} = 0.25$	$S = 22 \mu\text{A/V}$ $R_i > 10 \text{M}\Omega$ $U_0 = 5 \text{Veff}$ $g = 110$ $dtot = 1,3\%$ $U_0 = 5 \text{Veff}$ $g = 160$	Wa = 1,5 W Wg ₂ = 0,3 W k = 10 mA Rg ₁ = 3 MΩ Rg ₁ = 22 MΩ ¹) Ufk = 100 V Ud inv p= 350 V d = 0,8 mA	21	E
EBL 1 für Endverstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 6,3 V If = 1,18 A Indirekt	Klasse A: Ua = 250 V Ra = 7 kΩ Ug ₂ = 250 V Rk = 150 Ω Ui = 4,2 Veff Klasse AB, 2 Röhren in Ua = 250 V Raa' = 10 kΩ Ug ₂ = 250 V Rk = 140 Ω Ui = 6,7 Veff Ui = 0 V	a = 36 g ₂ = 4 a = 2 × 28,5 g ₂ = 2 × 4,6 a = 2 × 24 g ₂ = 2 × 2,8	$S = 9 \text{ mA/V}$ $Ri = 50 \text{ k}\Omega$ $W_0 = 4.5 \text{ W}$ $dtot = 10\%$ $W_0 = 8.2 \text{ W}$ $dtot = 3.1\%$	Wa = 9 W Wg ₂ = 1,2 W Ik = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V Udp = 200 V Id = 0,8 mA	43	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EC 92 für UKW-Verstärker selbstschwingende Mischstufen	Uf = 6,3 V If = 0,15 A indirekt	Statische Daten: Ua = 250 V Ug = -2 V Ua = 170 V Ug = -1 V Ua = 100 V Ug = -1 V	la = 10 la = 8,5	Cag ~ 1,5 pF Cak ~ 0,24 pF S = 5 mA/V μ = 60 S = 5,5 mA/V μ = 66 S = 3,5 mA/V μ = 58	Wa = 2,5 W Ik = 15 mA Rg = 1 MΩ¹) Ufk = 90 V 1) Autom. Vorspg.	41	EV
ECC 40 für NF-Endverstärker	Uf == 6,3 V If == 0,6 A Indirekt	NF-Verstärker, 1 Systemer Us = 250 V Ra = 0,1 MΩ Rg = 1 MΩ Rg* = 0,33 MΩ Rk = 2,2 kΩ Klasse A, 1 Systemer Ua = 250 V Ra = 15 kΩ Rk = 920 Ω Ui = 3,9 Veff Klasse A, 2 Systemer Ua = 250 V Raa' = 30 kΩ Rk = 560 Ω Ui = 4,1 Veff	la = 1,4	$U_0 = 44 \text{ Veff}$ $g = 24$ $dtot = 3.7\%$ $S = 2.9 \text{ mA/V}$ $Ri = 11 \text{ k}\Omega$ $W_0 = 0.28 \text{ W}$ $dtot = 8.5\%$ $W_0 = 0.52 \text{ W}$ $dtot = 1\%$	Wa = 1,5 W lk = 10 mA Rg = 1 MΩ Ufk = 175 V	7	E
ECC 81 für UKW-Verstärker, -Mischstufen, Oszillatorstufen	Uf = 6,3 V If = 0,3 A oder Uf = 12,6 V If = 0,15 A indirekt	Statische Daten: Ua = 100 V Ug = -1 V Ua = 170 V Ug = -1 V Ua = 200 V Ug = -1 V Ua = 250 V Ug = -2 V	la = 3 la = 8,5 la = 11,5 la = 10	$C_{ak} = 1.7 \text{ pF}$ $C_{ak} = 0.18 \text{ pF}$ $S = 3.5 \text{ mA/V}$ $\mu = 58$ $S = 5.5 \text{ mA/V}$ $\mu = 66$ $S = 6.4 \text{ mA/V}$ $\mu = 66$ $S = 5 \text{ mA/V}$ $\mu = 60$	Wa = 2,5 W k = 15 mA Rg = 1 MΩ¹) Ufk = 90 V	22	E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
ECC 82 für Kipposz.	Uf = 6,3 V If = 0,3 A oder Uf == 12,6 If = 0,15 indirekt	Ua = 100 V Ug = 0 V Ua = 250 V Ug = -8,5 V	la = 11,8	S = 3.1 mA/V $\mu = 19.5$ $Ri = 6.25 \text{ k}\Omega$ S = 2.2 mA/V $\mu = 17$ $Ri = 7.7 \text{ k}\Omega$		76	EV
ECH 3 für regelbare Mischstufen	Uf = 6,3 V If = 0,2 A Indirekt	$U_{b}=U_{aH}=250 \text{ V}$ $R_{1} = 24 \text{ k}\Omega$ $R_{2} = 33 \text{ k}\Omega$ $R_{aT} = 45 \text{ k}\Omega$ $R_{gT}+g_{3} = 50 \text{ k}\Omega^{1}$) $R_{k} = 215 \Omega$ $U_{g_{1}} = -2 \text{ V}$ $U_{g_{1}} = -23.5 \text{ V}$ $^{1}) \text{ RgT}+g_{3} \text{ an Katode}$	$1g_2 + g_4 = 3,0$	$S_c = 650 \mu A/V$ $R_i = 1,3 MΩ$ $S_c = 6,5 \mu A/V$ $R_i > 3 MΩ$	$W_{aH} = 1.2 W$ $W_{g_3} + g_4 = 0.6 W$ $W_{aT} = 1.5 W$ $V_{aT} = 15 mA$ $V_{aT} = 100 k\Omega^1$ $V_{aT} = 3 M\Omega$ $V_{aT} = 100 V$	54	N
ECH 4 für regelbare Mischstufen, HF-Verstärker, NF-Verstärker	Uf = 6,3 V If = 0,35 A Indirekt	Mischstufe: $U_{b}=U_{aH}=250 \text{ V}$ $Rg_{2}+g_{4}=24 \text{ k}\Omega$ $RaT=20 \text{ k}\Omega$ $RgT+g_{3}=50 \text{ k}\Omega^{1})$ $Rk=150 \Omega$ $Ug_{1}=-2 \text{ V}$ $Ug_{1}=-24,5 \text{ V}$ Heptodentell als HF-V $U_{b}=U_{aH}=250 \text{ V}$ $Ug_{3}=0 \text{ V}$ $Rg_{2}+g_{4}=45 \text{ k}\Omega$ $Ug_{1}=-2 \text{ V}$ $Ug_{1}=-44 \text{ V}$ Triodentell als NF-Ve $U_{b}=250 \text{ V}$ $RaT=0,1 \text{ M}\Omega$ $UgT=-2 \text{ V}$	$ g_2+g_4 =6,2$ $ aT =4,5$ $ gT+g_3 =190 \mu A$ /erstärker: $ aH =5,3$ $ g_2+g_4 =3,5$	$Sc = 750 \mu A/V$ $Ri = 1.4 MΩ$ $raeq = 55 kΩ$ $Sc = 7.5 \mu A/V$ $Ri > 3 MΩ$ $S = 2.2 mA/V$ $Ri = 0.9 MΩ$	$W_{aH} = 1,5 W$ $W_{g_2+g_4} = 1 W$ $W_{aT} = 0,8 W$ $I_k = 15 mA$ $R_{gT+g_3} = 3 M\Omega^1$) $R_{g_1} = 3 M\Omega$ $U_{fk} = 50 V$	55	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
für If =	Uf = 6,3 V If = 0,2 A indirekt	Ub=UaH=250 V $R_1 = 35 \text{ k}\Omega$ $R_2 = 60 \text{ k}\Omega$ $RaT = 30 \text{ k}\Omega$ Uosc(gT+g ₃) = 8,5 Veff $RgT+g_3 = 30 \text{ k}\Omega^1$) 1) RgT+g3 an Katode	laH = 2,2	Cag ₁ < 0,001 pF C(gT+g ₃)g ₁ < 0,25 pF	$WaH = 1.8 W$ $Wg_2+g_4 = 0.6 W$ $WaT = 1 W$ $Ik = 18 mA$ $RgT+g_3 = 0.1 M\Omega^1$) $Rg_1 = 3 M\Omega$ $Ufk = 100 V$	65	N
Mischstaten		$R_k = 230 \Omega \ Ug_1 = -2 V \ Ug_1 = -16 V$	$ g_2+g_4=2.8 $ $ aT=3.4 $	$Sc = 640 \mu A/V$ $Ri > 1 MΩ$ $Sc = 6,4 \mu A/V$ $Ri > 7 MΩ$			
FCH 21 für regelbare Mischstufen, HF-Verstärker, NF-Verstärker	Mischstufe: Ub=UaH=250 V Rg ₂ +g ₄ = 24 kΩ RaT = 20 kΩ RgT+g ₃ = 50 kΩ ¹) Rk = 150 Ω Ug ₁ = -2 V Ug ₁ = -24,5 V	aH = 3 g ₂ +g ₄ = 6,2 aT = 4,5 gT+g ₃ = 190 μA	$C_{ag_1} < 0.002 \text{ pF}$ $C_{(gT+g_3)g_1} < 0.35 \text{ pF}$ 0.35 pF $S_c = 750 \mu\text{A/V}$ $R_i = 1.4 \text{ M}\Omega$ $r_{aeq} = 55 \text{ k}\Omega$ $S_c = 7.5 \mu\text{A/V}$ $R_i > 3 \text{ M}\Omega$	$W_{aH} = 1,5 W$ $W_{g_{2}+g_{4}} = 1 W$			
	Heptodenteil als HF-V Ub=UaH = 250 V Ug ₃ = 0 V Rg ₂ +g ₄ = $45 \text{ k}\Omega$ Ug ₁ = -2 V Ug ₁ = -44 V Triodenteil als NF-Ver Ub = 250 V RaT = $0,1 \text{ M}\Omega$ UgT = -2 V	aH = 5,3 g ₂ +g ₄ = 3,5	S = 2,2 mA/V Ri = 0,9 MΩ	$WaT = 0.8 W$ $Ik = 15 mA$ $RgT+g_3 = 3 M\Omega^1$) $Rg_1 = 3 M\Omega$ $Ufk = 50 V$	16	N	
		¹) RgT+g3 an Katode	angeschlossen				

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
ECH 42 für regelbare Mischstufen	Uf = 6,3 V If = 0,23 A indirekt	$\begin{array}{lll} \text{Ub=UaH} = 250 \text{ V} \\ \text{R}_1 & = 27 \text{ k}\Omega \\ \text{R}_2 & = 27 \text{ k}\Omega \\ \text{RaT} & = 33 \text{ k}\Omega \\ \text{Uosc}(\text{gT+g}_3) = 8 \text{Veff} \\ \text{RgT+g}_3 & = 22 \text{ k}\Omega^1) \\ \text{Rk} & = 180 \Omega \\ \text{Ug}_1 & = -2 \text{ V} \\ \text{Ug}_1 & = -29 \text{ V} \end{array}$		$C_{ag_1} < 0.1 \text{ pF}$ $C_{(gT+g_3)g_1} < 0.35 \text{ pF}$ $C_{(gT+$	$WaH = 1.5 W$ $Wg_2+g_4 = 0.3 W$ $WaT = 0.8 W$ $IkH = 7 mA$ $IkT = 6 mA$ $RgT+g_3 = 3 M\Omega^1$) $Rg_1 = 3 M\Omega$ $Ufk = 50 V$	8	E
		¹) RgT+g3 an Katoo	de angeschlosse	∍n			
ECH 43	Auf	hnische Daten wie ECH Grund konstruktiver M direkt nachfolgendem N	laßnahmen beso	nders geelgnet für Schalf	tungen	8	E
ECH 81 für regelbare Mischstufen, HF-Verstärker, selbstschwingende UKW-Mischstufen, NF-Verstärker	Uf = 6,3 V If = 0,3 A Indirekt	Mischstufe: $U_b = U_{aH} = 250 \text{ V}$ $Rg_2 + g_4 = 22 \text{ k}\Omega$ $RaT = 33 \text{ k}\Omega$ $RgT + g_3 = 47 \text{ k}\Omega^1)$ $Ug_1 = -2 \text{ V}$ $Ug_1 = -28,5 \text{ V}$ Heptodentell als HF-V $Ub = U_{aH} = 250 \text{ V}$ $Ug_3 = 0 \text{ V}$ $Rg_2 + g_4 = 39 \text{ k}\Omega$ $Ug_1 = -2 \text{ V}$ $Ug_1 = -42 \text{ V}$ Triodentell, statische G $Ua = 100 \text{ V}$ $Ug = 0 \text{ V}$	200 μA /erstärker: aH = 6,5 g ₂ +g ₄ = 3,8	$S_{c} = 775 \mu A/V$ $R_{i} = 1 MΩ$ $r_{aeq} = 70 kΩ$ $S_{c} = 7.75 \mu A/V$ $R_{i} > 3 MΩ$ $S_{c} = 7.75 \mu A/V$ $R_{i} > 3 MΩ$ $S_{c} = 7.75 \mu A/V$ $S_{c} = 9.7 MΩ$ $S_{c} = 9.7 MΩ$ $S_{c} = 1.6 kΩ$	WaH = 1,7 W Wg ₂ +g ₄ = 1 W WaT = 0,8 W kH = 12,5 mA kT = 6,5 mA Rg ₃ = 3 MΩ Rg ₁ = 3 MΩ RgT = 3 MΩ Ufk = 100 V	23	EV

Type und Anwendung	Neizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
ECL 11 für NF- und Endverstärker	Uf = 6,3 V If = 1 A indirekt	Triodentell, statische Ua = 250 V Ug = -2,5 V Tetrodenteil, Klasse A Ua = 250 V Ra = $7 \text{ k}\Omega$ Ug ₂ = 250 V Ug ₃ = -6 V Ui = $4,2 \text{ Veff}$	la = 2	S = 2 mA/V $\mu = 70$ $Ri = 35 \text{ k}\Omega$ S = 9 mA/V $Ri = 25 \text{ k}\Omega$ $W_0 = 3.8 \text{ W}$ dtot = 10%	$W_{aQ} = 9 W$ $W_{aT} = 0.5 W$ $W_{g_2Q} = 1.2 W$ $I_k = 60 \text{ mA}$ $R_{g_1Q} = 0.7 \text{ M}\Omega$ $R_{gT} = 2 \text{ M}\Omega$ $U_{fk} = 50 \text{ V}$	66	N
ECL 80 für Oszillatorstufen, Endstufen für Vertikalablenkung Horizontalfrequenz- Generatoren, Amplitudensiebe in Fernsehgeräten, NF- und Endverstärker	Uf = 6,3 V If = 0,3 A Indirekt	Triodenteil, statische $UaT = 100 \text{ V}$ $UgT = 0 \text{ V}$ Pentodenteil, Klasse A $Ua = 170 \text{ V}$ $Ra = 11 \text{ k}\Omega$ $Ug_3 = 0 \text{ V}$ $Ug_1 = -6,7 \text{ V}$ $Ui = 3,7 \text{ Veff}$ Pentodenteil als Amp $Ua = 20 \text{ V}$ $Ug_3 = 0 \text{ V}$ $Ug_3 = 0 \text{ V}$ $Ug_1 = -6,7 \text{ V}$ $Ui = 3,7 \text{ Veff}$ Pentodenteil als Amp $Ua = 20 \text{ V}$ $Ug_1 = 0 \text{ V}$ $Ug_1 = -1,45 \text{ V}$ Triodenteil als NF-Ve $Ub = 170 \text{ V}$ $Ra = 0,22 \text{ M}\Omega$ $Rg^* = 0,68 \text{ M}\Omega$ $Ug = -3,5 \text{ V}$	la = 8 la = 15 lg ₂ = 2,8 la = 2 la = 0,1	S = 1.9 mA/V $\mu = 20$ $Ri = 10.5 \text{ k}\Omega$ S = 3.2 mA/V $Ri = 0.15 \text{ M}\Omega$ $W_0 = 1 \text{ W}$ dtot = 10% dtot = 10%	WaP = 3,5 W WaT = 1 W UapP = 1,2 kV Ua invp P=500 V Wg ₂ P = 1,2 W kP = 25 mA kT = 8 mA Rg ₁ P = 2 MΩ ¹) Rg ₁ P = 1 MΩ ²) RgT = 3 MΩ ¹) RgT = 1 MΩ ²) Ufk = 150 V	24	

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EF 9 für regelbare HF- und NF-	Ut = 6,3 V If = 0,2 A indirekt	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a = 6 g ₂ = 1,7	$C_{ag_1} < 0,002 \text{ pF}$ $S = 2,2 \text{ mA/V}$ $R_i = 1,25 \text{ M}\Omega$ $S = 22 \mu\text{A/V}$ $R_i > 10 \text{ M}\Omega$		45	N
Verstärker		$Ug_3 = 0 V$ $Rg_2 = 0.8 M\Omega$ $Rk = 1.75 k\Omega$ $Ug_1 = -2 V$ $Ug_1 = -25 V$	la = 0,87 lg ₂ = 0,26	U ₀ = 5 Veff g = 106 dtot = 2,4% U ₀ = 5 Veff g = 6,7 dtot = 4,4%			
EF 11	Uf = 6,3 V	HF-Verstärker: $Ub=Ua=250 \text{ V}$ $Rg_2=75 \text{ k}\Omega$ $Rk=250 \Omega$ $Ug_1=-2 \text{ V}$ $Ug_1=-45 \text{ V}$	la = 6 lg ₂ = 2	$C_{ag_1} < 0,002 \text{ pF}$ $S = 2,2 \text{ mA/V}$ $R_i = 2 \text{ M}\Omega$ $S = 22 \mu \text{A/V}$ $R_i > 10 \text{ M}\Omega$	$Wa = 2 W$ $Wg_2 = 0.3 W$		
für regelbare HF- und NF-Verstärker	If = 0,2 A indirekt	$NF-Verstärker$: $Ub = 250 \text{ V}$ $Ra = 0.2 \text{ M}\Omega$ $Rg_2 = 0.6 \text{ M}\Omega$ $Rk = 1.5 \text{ k}\Omega$ $Ug_1 = -25 \text{ V}$ $Ug_1 = -25 \text{ V}$	la = 1 lg ₂ = 0,35	U ₀ = 5 Veff g = 98 dtot = 1,4% g = 12,5 dtot = 1,4%	Rg ₁ = 3 MΩ Ufk = 100 V	67	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EF 12 für HF- und NF-Verstärker	Uf = 6,3 V If = 0,2 A Indirekt	$\begin{array}{rcl} \text{HF-Verstärker:} \\ \text{Ua} &=& 250 \text{ V} \\ \text{Ug}_2 &=& 100 \text{ V} \\ \text{Rk} &=& 500 \Omega \\ \\ \text{NF-Verstärker:} \\ \text{Ub} &=& 250 \text{ V} \\ \text{Ra} &=& 0,2 \text{ M}\Omega \\ \text{Rg}_2 &=& 0,5 \text{ M}\Omega \\ \text{Rk} &=& 1,6 \text{ k}\Omega \\ \end{array}$	la = 3 lg ₂ = 1	$C_{ag_1} < 0,002 \text{ pF}$ $S = 2,1 \text{ mA/V}$ $R_i = 2 \text{ M}\Omega$ $U_0 = 5 \text{ Veff}$ $g = 181$ $d_{tot} = 0,2\%$	Wa = 1,5 W Wg ₂ = 0,4 W lk = 10 mA Rg ₁ = 3 MΩ Ufk = 100 V	67	N
EF 40 für NF-Vorverstärker	Uf = 6,3 V If = 0,2 A indirekt	$\begin{array}{rcl} \text{NF-Verstärker:} \\ \text{Ub} &= 250 \text{ V} \\ \text{Ra} &= 0,33 \text{ M}\Omega \\ \text{Rg*} &= 1 \text{ M}\Omega \\ \text{Ug}_3 &= 0 \text{ V} \\ \text{Rg}_2 &= 1,5 \text{ M}\Omega \\ \text{Rg}_1 &= 1 \text{ M}\Omega \\ \text{Rk} &= 2,2 \text{ k}\Omega \\ \end{array}$ $\begin{array}{rcl} \text{Ub} &= 250 \text{ V} \\ \text{Ra} &= 0,22 \text{ M}\Omega \\ \text{Rg*} &= 0,68 \text{ M}\Omega \\ \end{array}$ $\begin{array}{rcl} \text{Ug}_3 &= 0 \text{ V} \\ \text{Rg}_2 &= 1,2 \text{ M}\Omega \\ \text{Rg}_1 &= 10 \text{ M}\Omega^3) \\ \end{array}$ $\begin{array}{rcl} \text{Statische Daten:} \\ \text{Ua} &= 250 \text{ V} \\ \text{Ug}_3 &= 0 \text{ V} \\ \end{array}$		dtot = 0,9% U ₀ = 12 Veff g = 200 dtot = 1%	$Wa = 1 W$ $Wg_2 = 0,2 W$ $Ik = 6 mA$ $Rg_1 = 10 M\Omega^1$) $Rg_1 = 3 M\Omega^2$) $Rg_1 = 22 M\Omega^3$) $Ufk = 100 V$ 1) $Wa < 0,2 W$ 2) $Wa > 0,2 W$ 3) $Rk = 0$	9	E
EF 41 für regelbare HF-Verstärker	Uf = 6,3 V If = 0,2 A indirekt	1 - 22	a = 3 g ₂ = 550μA a = 6 g ₂ = 1,7	$S = 1.85 \text{ mA/V}$ $Ri = 2.5 \text{ M}\Omega$ $Cag_1 < 0.002 \text{ pF}$ $S = 2.2 \text{ mA/V}$ $Ri = 1 \text{ M}\Omega$ $raeq = 6.5 \text{ k}\Omega$ $S = 22 \mu\text{A/V}$ $Ri > 10 \text{ M}\Omega$	Rg1	10	E

			1		1	v ₁	
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EF 42 für Breitbandverstärker	Uf = 6,3 V If = 0,33 A Indirekt	$U_a = 250 \text{ V}$ $U_{g_3} = 0 \text{ V}$ $U_{g_2} = 250 \text{ V}$ $U_{g_1} = -2 \text{ V}$	la = 10 lg ₂ = 2,4	$Cag_1 < 0,006 pF$ S = 9 mA/V $Ri = 0,5 M\Omega$ $raeq = 840 \Omega$	Wa = 3,5 W Wg ₃ = 0,7 W lk = 25 mA Rg ₁ = 1 MΩ ¹) Ufk = 100 V	11	E
EF 43 für regelbare Breitbandverstärker	Uf = 6,3 V If = 0,33 A Indirekt	$U_{b} = U_{a} = 250 \text{ V}$ $U_{g_{3}} = 0 \text{ V}$ $R_{g_{2}} = 33 \text{ k}\Omega$ $R_{k} = 105 \Omega$ $U_{g_{1}} = -28 \text{ V}$ $U_{g_{1}} = -28 \text{ V}$	la = 15 Ig₂ = 3,5	$Cag_1 < 0,006 pF$ $S = 6,4 mA/V$ $Ri = 0,5 MΩ$ $raeq = 1,7 kΩ$ $S = 64 μA/V$	$W_{g_2} = 3,75 \text{ W}$ $W_{g_2} = 0,7 \text{ W}$ $I_k = 20 \text{ mA}$ $R_{g_1} = 1 \text{ M}\Omega$ $U_{fk} = 100 \text{ V}$	11	E
für HF-Verstärker, Breitbandverstärker, selbstschwingende UKW-Mischstufen	Uf = 6,3 V If = 0,3 A indirekt	Ua = 250 V Ug ₃ = 0 V Ug ₂ = 250 V Ug ₁ = -3.5 V Ua = 170 V Ug ₃ = 0 V Ug ₃ = 0 V Ug ₂ = 170 V	la = 10 lg ₂ = 2,8	$Cag_1 < 0.007 pF$ $S = 6.8 mA/V$ $Ri = 0.65 MΩ$ $raeq = 1.2 kΩ$ $re = 15 kΩ$ $(λ = 6 m)$ $S = 7.4 mA/V$ $Ri = 0.5 MΩ$ $raeq = 1 kΩ$ $raeq = 1 kΩ$ $re = 10 kΩ$	$W_{g_2} = 2.5 \text{ W}$ $W_{g_2} = 0.7 \text{ W}$ $k = 15 \text{ mA}$ $R_{g_1} = 1 \text{ M}\Omega^1$ $R_{g_1} = 0.5 \text{ M}\Omega^2$ $U_{fk} = 150 \text{ V}$ 1) Autom. Vorspg.	25	E
EF 85 für regelbare Breitbandverstärker	Uf = 6,3 V If = 0,3 A indirekt	$Ug_{1} = 170 \text{ V}$ $Ug_{1} = -2 \text{ V}$ $Ug_{3} = 0 \text{ V}$ $Rg_{2} = 60 \text{ k}\Omega$ $Ug_{1} = -2 \text{ V}$ $Ug_{1} = -35 \text{ V}$ $Ug_{3} = 0 \text{ V}$ $Ug_{3} = 35 \text{ V}$ $Ug_{4} = 25 \text{ k}\Omega$ $Ug_{5} = 25 \text{ k}\Omega$ $Ug_{6} = 25 \text{ k}\Omega$ $Ug_{1} = -2 \text{ V}$ $Ug_{1} = -2 \text{ V}$ $Ug_{2} = -2 \text{ V}$	a = 10 g ₂ = 2.5 g ₃ = 2.5 g ₂ = 2.5		Wa = 2.5 W Wg ₂ = 0.65 W Ik = 15 mA Rg ₁ = 3 MΩ Ufk = 150 V	25	EV

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EFM 11 für NF-Verstärker mit Abstimmanzeiger	Uf = 6,3 V If = 0,2 A Indirekt	$U_{b}=U_{1}=250 \text{ V}$ $R_{a}=130 \text{ k}\Omega$ $R_{g_{2}}+D=350 \text{ k}\Omega$ $R_{k}=650 \Omega$ $U_{g_{1}}=-1,5 \text{ V}$ $U_{g_{1}}=-20 \text{ V}$	I = 0,65 Ia = 1 Ig ₂ +D = 0,63	$d_{tot} = 1,5\%$	$W_{g_2} = 0.4 W$ $W_{g_2} = 0.2 W$ $I_k = 4 mA$ $R_{g_1} = 3 M\Omega$ $U_{fk} = 100 V$	68	E
EL 3 N für Endverstärker	Uf = 6,3 V If = 0,9 A Indirekt	Klasse A: $U_a = 250 \text{ V}$ $R_a = 7 \text{ k}\Omega$ $U_{g_2} = 250 \text{ V}$ $R_k = 150 \Omega$ $U_i = 4,2 \text{ Veff}$	la = 36 lg ₂ = 4	$S = 9 \text{ mA/V}$ $R_i = 50 \text{ k}\Omega$ $W_0 = 4.5 \text{ W}$ $dtot = 10\%$	Wa = 9 W Wg ₂ = 1,2 W lk = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V	52	N
EL 11 für Endverstärker	Uf = 6,3 V If = 0,9 A Indirekt	Klasse A: Ua = 250 V Ra = 7 k Ω Ug ₂ = 250 V Rk = 150 Ω Ui = 4,2 Veff Klasse AB, 2 Röhren in Ua = 250 V Raa' = 10 k Ω Ug ₂ = 250 V Rk = 140 Ω Ui = 6,7 Veff Ui = 0 V	la =2×28,5	$S = 9 \text{ mA/V}$ $R_i = 50 \text{ k}\Omega$ $W_0 = 4.5 \text{ W}$ $dtot = 10\%$ $W_0 = 8.2 \text{ W}$ $dtot = 3.1\%$	Wa = 9 W Wg ₂ = 1,2 W Ik = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V	69	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EL 12	Uf = 6,3 V If = 1,2 A	Klasse A: Ua = 250 V Ra = 3,5 k Ω Ug ₂ = 250 V Rk = 90 Ω Ui = 4,5 Veff Klasse AB, 2 Röhren i	la = 72 lg ₂ = 8 n Gegentakt:	S = 15 mA/V Ri = 25 kΩ W ₀ = 8 W dtot = 10%	$W_{g_2} = 18 W$ $W_{g_2} = 2,5 W$ $W_{g_3} = 90 mA$ $W_{g_3} = 1 MΩ$	69	N
Endverstärker	indirekt	$U_a = 250 \text{ V}$ $R_{aa}' = 5 \text{ k}\Omega$ $U_{g_2} = 250 \text{ V}$ $R_k = 90 \Omega$ $U_i = 7,3 \text{ Veff}$ $U_i = 0 \text{ V}$	la =2×53 lg ₂ =2×8,5 la =2×45 lg ₂ =2×5,1	W ₀ = 14,5 W dtot = 2,2%	Rg₁ = 1 MΩ Ufk = 50 V		-
EL 12/325 für Endverstärker	Uf = 6,3 V If = 1,2 A Indirekt	Klasse AB, 2 Röhren i Ua = 325 V Rea' = $5 \text{ k}\Omega$ Ug ₂ = 325 V Rk = $2 \times 200 \Omega$ Ui(gg') = 27 Veff Ui = 0 V	n Gegentakt: la =2 × 70 lg2 = 2 × 20 la = 2 × 55 lg2 = 2 × 6,5	W ₀ = 28,5 W dtot = 10%	$Wa = 18 W$ $Wg_2 = 2,5 W$ $Jk = 90 mA$ $Rg_1 = 0,7 M\Omega^1$) $Rg_1 = 0,2 M\Omega^2$) $Ufk = 50 V$ $Ufk = 50 V$ $Ug2 < 275 V$ $Ug2 > 275 V$	69	N
EL 12/375 für Endverstärker	Uf = 6,3 V If = 1,5 A indirekt	Kiasse AB, 2 Röhren Ua = 350 V Raa' = 5 k Ω Ug ₂ = 350 V Rk = 2 × 250 Ω Ui = 21 Veff Ui = 0 V	la =2×54	$W_0 = 35 W$ $d \cot = 5,4\%$	$Wa = 18 W$ $Wg_2 = 2.5 W$ $Ik = 90 mA$ $Rg_1 = 0.7 M\Omega^1$) $Rg_1 = 0.2 M\Omega^2$) $Ufk = 50 V$ 1) $Ua = Ug2 < 275 V$ 2) $Ua = Ug2 > 275 V$	69	E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockei- Nr.	Bemer- kung
EL 34 für Kraftverstärker	Uf = 6,3 V If = 1,5 A indirekt	Widerstände Klasse A: Uba = 265 V Ra = 2 kΩ Uga = 0 V Uga = -13,5 V Ui = 8,7 Veff Wi = 375 V Raa' = 3,4 kΩ Uga = 0 V Rga = 470 Ω¹) Rk = 130 Ω Ui = 21 Veff Ui = 0 V Rga = 0 V Raa' = 11 kΩ Uga = 0 V Rga = 0 V Uba = 800 V Raa' = 11 kΩ Uga = 0 V Uba = 39 V Uaa = -39 V Ui = 23,4 Veff Ui = 0 V Ui = 0 V	$ a = 100$ $ g_2 = 14,9$ In Gegentakt: $ a = 2 \times 95$ $ g_2 = 2 \times 22,5$ $ a = 2 \times 75$ $ g_2 = 2 \times 11,5$ In Gegentakt: $ a = 2 \times 91$	$S = 11 \text{ mA/V}$ $Ri = 15 \text{ k}\Omega$ $W_0 = 11 \text{ W}$ $dtot = 10\%$ $dtot = 5\%$	Wa = 25 W Wg ₂ = 8 W Ik = 150 mA Rg ₁ (A,AB) = 0,7 MΩ Rg ₁ (B)=0,5 MΩ Ufk = 100 V	Nr. 20	E
		¹) für beide Röhren (jemein s am				

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EL 41 für Endverstärker	Uf = 6,3 V If = 0,71 A Indirekt	Klasse A: Ua = 250 V Ra = 7 kΩ Ug ₂ = 250 V Rk = 170 Ω Ui = 3,8 Veff Klasse AB, 2 Röhren i Ua = 250 V Raa' = 7 kΩ Ug ₂ = 250 V Rk = 85 Ω Ui = 5,6 Veff Ui = 0 V	a = 36 g ₂ = 5,2 n Gegentakt: a = 2 × 39,5 g ₂ = 2 × 8 a = 2 × 36 g ₂ = 2 × 5,2	$S = 10 \text{ mA/V}$ $Ri = 40 \text{ k}\Omega$ $W_0 = 3.9 \text{ W}$ $dtot = 10\%$ $W_0 = 9.4 \text{ W}$ $dtot = 4.6\%$	Wa = 9 W Wg ₂ = 1,4 W k = 55 mA Rg ₁ = 1 MΩ Ufk = 50 V	12	E
EL 42 für Endverstärker	Uf = 6,3 V If = 0,2 A indirekt	Klasse A: Ua = 225 V Ra = $9 \text{ k}\Omega$ Ug ₂ = 225 V Rk = 360Ω Ui = $8,0 \text{ Veff}$ Klasse AB, 2 Röhren i Ua = 250 V Raa' = $15 \text{ k}\Omega$ Ug ₂ = 250 V Rk = 310Ω Ui = $12,5 \text{ Veff}$ Ui = 0 V Klasse B, 2 Röhren in Ua = 250 V Raa' = $16 \text{ k}\Omega$ Ug ₂ = 250 V Ug ₂ = 250 V Ug ₂ = 250 V Ug ₁ = $-22,5 \text{ V}$ Ui = 16 Veff Ui = 0 V	$ la = 2 \times 21,5 $ $ lg_2 = 2 \times 6,7 $ $ la = 2 \times 20 $ $ lg_2 = 2 \times 3,2 $	$S = 3.2 \text{ mA/V}$ $R_i = 90 \text{ k}\Omega$ $W_0 = 2.8 \text{ W}$ $dtot = 12\%$ $W_0 = 5.5\%$ $W_0 = 6.5 \text{ W}$ $dtot = 5\%$	Wa = 6 W Wg ₂ = 1 W k = 35 mA Rg ₁ = 2 MΩ Ufk = 50 V	12	E .

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EL 84 Endpentode	Uf = 6,3 V If = 0,75 A Indirekt	Ua = 250 V Ra = 5,2 kΩ Ug ₂ = 250 V Ug ₁ = -7,5 V Ui = ca.4,3 Veff Ui = ca.4 Veff Ui = ca.0,3 Veff		S = 11 mA/V $\mu g_2 g_1 = \text{ca. } 20$ $W_0 = 6 \text{ W}$ dtot = ca. 11.2% $W_0 = 5.7 \text{ W}$ dtot = 10% $W_0 = 50 \text{ mW}$	$Wa = 12 W$ $Wg_2(Ui=0)=1,5W$ $Wg_2(W_0=max)=$ $3,5 W$ $Ik = 75 mA$ $Rg_1 = 1 M\Omega^1$ $Ufk = 75 V$	75	EV
EM 4 Abstimmanzelger (2 Systeme Uf = 6.	Uf = 6,3 V	$U_b = U_1 = 250 \text{ V}$ $R_{a_1} + D_1 = R_{a_2} + D_2$ $= 1 \text{ M}\Omega$ $U_g = 0 \text{ V}$ $U_g = -5 \text{ V}$ $U_g = -16 \text{ V}$	l ₁ = 2 l ₁ = 2,5 l ₁ = 2,7	$a_1 = 90^{\circ}$ $a_2 = 90^{\circ}$ $a_1 = 5^{\circ}$ $a_2 = 55^{\circ}$ $a_1 = 0^{\circ}$ $a_2 = 5^{\circ}$	Rg = 3 MΩ	53	E
mit verschiedener Empfindlichkeit) EM 34	If = 0,2 A Indirekt	$U_{b}=U_{1}=200 \text{ V}$ $R_{a_{1}}+D_{1}=R_{a_{2}}+D_{2}$ $=1 \text{ M}\Omega$ $U_{g}=0 \text{ V}$ $U_{g}=-4,2 \text{ V}$ $U_{g}=-12,5 \text{ V}$	1 = 1,4 1 = 1,8 1 = 2	$a_1 = 90^{\circ}$ $a_2 = 90^{\circ}$ $a_1 = 5^{\circ}$ $a_2 = 46^{\circ}$ $a_1 = 0^{\circ}$ $a_2 = 5^{\circ}$	Ufk = 100 V	19	E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
EQ 80 für FM- Demodulatorstufen und Begrenzer, NF-Verstärker	Uf = 6,3 V If = 0,2 A Indirekt	FM-Demodulatorstufe Ub = 250 V Ra = 0,47 M Ω Ug ₂ + ₄ + ₆ = 20 V Ug ₃ =Ug ₅ = -4 V Ug ₁ = 0 V φ (Uig ₃ -Uig ₅) = 90 ° Uig ₃ = 12 Veff Uig ₅ = 12 Veff NF-Verstärker:	Ia = 0,28 ig ₅ = 30 \(\mu \text{A} \) ig ₈ = 90 \(\mu \text{A} \) ig ₂ + 4 + 6 = 1,5	$Cg_3g_5 < 0.4 pF$ Ri = 5 MΩ	$W_{a} = 0.1 W$ $W_{g_{2}+_{4}+_{6}=0.1} W$ $I_{k} = 3 \text{ mA}$ $R_{g_{5}} = 3 \text{ M}\Omega$ $R_{g_{3}} = 3 \text{ M}\Omega$ $R_{g_{1}} = 1 \text{ M}\Omega$ $R_{g_{1}} = 22 \text{ M}\Omega^{1}$ $U_{fk} = 100 \text{ V}$	26	E
NF-Verstärker	$U_{b} = 250 \text{ V}$ Ra = 0,47 MΩ $U_{g_{2}+_{3}+_{4}+_{5}+_{8}}$ = ca. 20 V $R_{g_{1}} = 10 \text{ M}Ω^{1}$	la = 0,28	U ₀ = 15 Veff g = 150 dtot = 2,8%	¹) Rk == 0. Vorspg. nur durch Rg			
		50 Hz:		-	$Utr = 5 kVeff$ $I_0 = 3 mA$ $Rt = min.0,1MΩ$ $Cfilt = 0,1 μF$		
EY 51 für Einweg-Geichrichter	Uf = 6,3 V If = 90 mA indirekt	10—500 kHz:			$\begin{array}{ll} U_{a \; invp} = 17 \; kV \\ I_{0} & = 3 \; mA \\ R_{t} = min.0,1 MΩ \\ C_{filt} = 0,01 \; μF \end{array}$	74	E
		Impulsbetrieb:			Ua invp = 17 kV I ₀ = 0,35 mA Iop = 80 mA ¹) Cfilt = 5000 pF	 - -	
ļ	<u> </u>	<u> </u>	zwischen 2 imp	ulsen, aber nicht länge			
EZ 12 für Zweiweg-Gleichrichter	Uf = 6,3 V If = 0,85 A Indirekt	$Utr = 2 \times 500 \text{ Veff}$ $Utr = 2 \times 400 \text{ Veff}$			$I_0 = 100 \text{ mA}$ $I_0 = 125 \text{ mA}$ $U \text{tr} = 2 \times 500 \text{ Veff}$ $U \text{fk} = 0 \text{ V}$	70	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
		Utr = 2×350 Veff			$l_0 = 90 \text{ mA}$ Rt=min. 2×300 Ω		
EZ 40 für Zweiweg-Gleichrichter Uf = 6,3 V If = 0,6 A indirekt	$Utr = 2 \times 300 \text{ Veff}$			$I_0 = 90 \text{ mA}$ $R_1 = \min 2 \times 215 \Omega$			
	$U_{tr} = 2 \times 250 \text{ Veff}$			$I_0 = 90 \text{ mA}$ Rt=min. 2×125 Ω		E	
				Cfilt = 50μ F für alle Spannungen			
				····	$U_{tr} = 2 \times 350 \text{ Veff}$ $U_{fkp} = 500 \text{ V}$		
		$Utr = 2 \times 350 \text{ Veff}$			Rt=min. $2\times300 \Omega$		
		$Utr = 2 \times 300 Veff$			$R_1 = \min. 2 \times 215 \Omega$		
EZ 80	Uf = 6,3 V	Utr = 2×275 Veff			$Rt = min. 2 \times 175 \Omega$		
für	If = 0,6 A	$Utr = 2 \times 250 \text{ Veff}$			Rt=min. $2 \times 125 \Omega$	27	E
Zweiweg-Gleichrichter Indirekt				I ₀ = max. 90 mA Cfilt = max. 50 μF für alle Spannungen	<u> </u> 		
			·····	Utr = 2×350 Veff Utkp = 500 V			

.

•

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
PABC 80 für AM/FM- Demodulatorstufen NF-Verstärker	Uf = 9,5 V If = 0,3 A indirekt	Ua = 170 V Ug = -1,55 V Ua = 100 V Ug = -1 V Diodentell, statische Ud ₁ = 10 V Ud ₂ = 5 V Ud ₃ = 5 V	la = 1,5 la = 0,8 Daten:	S = 1,65 mA/V $\mu = 70$ $Ri = 42 \text{ k}\Omega$ S = 1,4 mA/V $\mu = 70$ $Ri = 50 \text{ k}\Omega$ $Ri_2 \simeq 500 \Omega$ $Ri_3 \simeq 200 \Omega$ $Ri_3 \simeq 200 \Omega$	WaT = 1 W k = 5 mA Rg = 3 MΩ Rg = 22 MΩ ¹) Ufk = 150 V Ud ₁ p=Ud ₃ p= Ud ₃ p=350 V Id ₁ = 1 mA Id ₂ =Id ₃ = 10 mA Rk = 0 Vorspg. nur durch Rg	28	EV
PCC 84 UHF- Kaskadenverstärker	Uf = 7 V If = 0,3 A Indirekt	Ua = 90 V Ug = -1,5 V	la = 12	 S = 6.0 mA/V = 24 a) Das Röhrensystem a-g-k hat zwei Kathodenanschlüsse, von denen ki m. d. Eingangsschaitg. verbunden werden soll. b) Das System a-g-k wird in Kathodenbasisschaitg., das System a'-g'-k' in Gitterbasisschaitg. verwendet. c) Die Gittervorspannung des Gitterbasissystems muß durch einen entkoppelten Kathodenwiderstand von 100 Ω erzeugt werden. 	Wa+Wa' = 2,5W Ik=lk' = 18 mA -Ug=-Ug'=50 V Rg = 0,5 MΩ Ufk'(K pos.) = 250 V¹) Ufk' (K neg.) = 90 V Ufk = 90 V Rfk = 20 kΩ		E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockei- Nr.	Bemer- kung
PL 81 für Horizontalablenk- Endstufen in Fernsehgeräten	Uf = 21,5 V If = 0,3 A indirekt	Statische Daten: Ua = 170 V Ug ₈ = 0 V Ug ₂ = 170 V Ug ₁ = -22 V	Ia = 45 Ig ₂ = 3		Wa = 8 W Wg ₂ = 4,5 W Wa+Wg ₂ = 10W Ik = 180 mA Rg ₁ = 0,5 M Ω Ufk = 200 V Uap = \pm 7 kV ¹) 1) Max. 18% einer Periode, aber nicht länger als 18 μ sec	1	E
PL 82 für NF-Endverstärker und Vertikalablenk- Endstufen in Fernsehgeräten	Uf = 16,5 V If = 0,3 A indirekt	Klasse A: Ua = 170 V Ra = 3 k Ω Ug ₂ = 170 V Ug ₁ = -10,4 V Ui = 6 Veff Klasse A, 2 Röhren in Ua = 170 V Raa' = 4 k Ω Ug ₂ = 170 V Rk = 100 Ω Ui = 2×9,3 Veff Ui = 0 V	a = 53 g ₂ = 10 a = 2 × 50 g ₂ = 2 × 17 la = 2 × 46 g ₂ = 2 × 8,7	dtot = 5%	Wa = 9 W Wg ₂ = 2,5 W k = 75 mA Rg ₁ = 1 MΩ ¹) Rg ₁ = 0,4 MΩ ²) Ufk = 200 V Uap = 2,5 kV ³) Ua inv p=500 V 1) Autom. Vorspg. 2) Feste Vorspg. 3) Max. 10% einer Periode, aber nicht länger als 2 msec.	- -	E
PL 83 für Video-Endstufen in Fernsehgeräten	Uf = 15 V If = 0,3 A indirekt	Statische Daten: Ua = 170 V Ug ₃ = 0 V Ug ₂ = 170 V Ug ₁ = -2,3 V	la = 36 lg ₂ = 5	$Ca = 6.6 pF$ $Cag_1 < 0.1 pF$ $S = 10.5 mA/V$ $Ri = 0.1 M\Omega$	Wa = 9 W Wg ₂ = 2 W ik = 70 mA Rg ₁ = 1 MΩ ¹) Rg ₁ = 0,5 MΩ ²) Ufk = 150 V 1) Autom. Vorspg. 1) Feste Vorspg.	31	E

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
PY 80 für Zellenschalter		Periode, aber nicht länger 450 V=. k pos., f neg.	-		Ua inv p=4 kV ¹) Ia = 180 mA Iap = 400 mA Cfilt = 4 μF Ufkp = 650 V ²)	32	E
PY 81 für Zellenschalter	Uf = ca.17V If == 0,3 A indirekt	1) Max. 18% elner Perlo 2) Max. 220 Veff + 600 \			la = 150 mA lap = 450 mA U a inv p =4,5kV ¹) Utkp = 4,5kV ¹) ³) Ufkp = 800V ²) ³)	33	EV
PY 82 für Einweg-Gleichrichter	Uf = 19 V If = 0,3 A Indirekt	Utr = 250 Veff Utr = 200 Veff Utr = 127 Veff	V=, k pos., f ne	3 q .	$I_0 = 180 \text{ mA}$ $R^t = \text{min. } 125 \Omega$ $I_0 = 180 \text{ mA}$ $R^t = \text{min. } 30 \Omega$ $I_0 = 180 \text{ mA}$ $R^t = 0 \Omega$ $Cfilt = 60 \mu\text{F}$ $U^t = 250 \text{ Veff}$ $U^t = 550 \text{ V}^1$	32	E

.

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
RE 134 (Triode) für Endverstärker	Uf = 4 V If = 0,15 A direkt	Klasse A: Ua = 250 V Ra = 12 kΩ Rk = 1,5 kΩ Ui = 12 Veff	la == 12	$S = 2 \text{ mA/V}$ $R_i = 4.6 \text{ k}\Omega$ $W_0 = 0.65 \text{ W}$ $dtot = 5\%$	Wa = 3 W Ik = 15·mA Rg = 1 MΩ	61	N
RES 164 (Pentode) für Endverstärker	Uf = 4 V If = 0,15 A direkt	Klasse A: Ua = 250 V Ra = 10 kΩ Ug ₂ = 80 V Rk = 850 Ω Ui = 9 Veff	la = 12 Ig ₂ = 1,9	$S = 1.4 \text{ mA/V}$ $Ri = 60 \text{ k}\Omega$ $W_0 = 1.5 \text{ W}$ $dtot = 10\%$	$W_{g_2} = 3 W$ $W_{g_2} = 0.4 W$ $I_k = 15 mA$ $R_{g_1} = 1 M\Omega$	60	N
RES 964 (Pentode) für Endverstärker	Uf = 4 V If = 1,1 A direkt	Klasse A: Ua = 250 V Ra = 7 k Ω Ug ₂ = 250 V Rk = 350 Ω Ui = 9,7 Veff	la = 36 lg ₂ = 6,8	$S = 3 \text{ mA/V}$ $R_i = 43 \text{ k}\Omega$ $W_0 = 3,1 \text{ W}$ $dtot = 10\%$	$W_{g_2} = 9 W$ $W_{g_2} = 2.5 W$ $1k = 50 mA$ $R_{g_1} = 0.8 M\Omega$	60	N
REN 904 (Triode) für NF-Verstärker	Uf = 4 V If = 1 A indirekt	Statische Daten: Ua = 200 V Ug = -3,5 V	la == 6	S = 2,4 mÅ/V $\mu = 30$ Ri = 12,5 kΩ	Wa = 1,5 W Rg = 1 MΩ Ufk = 50 V	58	N
RENS 1284 (Pentode) für HF- und NF-Verstärker	Uf = 4 V If = 1,1 A indirekt	HF-Verstärker: Ua = 200 V Ug ₂ = 100 V Ug ₁ = -2 V	la = 3 lg ₂ = 1,1	$C_{ag_1} < 0.002 pF$ $S = 2.5 mA/V$ $R_i = 2 M\Omega$	$W_{g_2} = 1 W$ $W_{g_2} = 0.3 W$ $I_k = 10 mA$ $R_{g_1} = 1 M\Omega$ $U_{fk} = 50 V$	59	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
RENS 1294 (Pentode) für regelbare HF-Verstärker	Uf = 4 V If = 1,1 A indirekt	Ua = 200 V Ug ₂ = 100 V Ug ₁ = -2 V Ug ₁ = -35 V	la = 4,5 lg ₂ = 1,8	$Cag_1 = 0,002 pF$ $S = 2 mA/V$ $Ri = 1 M\Omega$ $S = 5 \mu A/V$ $Ri > 10 M\Omega$	$W_{g_2} = 1.5 W$ $W_{g_2} = 0.3 W$ $I_k = 10 mA$ $R_{g_1} = 4 M\Omega$ $U_{fk} = 80 V$	59	N
RENS 1374 d (Pentode) für Endverstärker	Uf = 4 V If = 1,1 A indirekt	Klasse A: Ua = 250 V Ra = 15 kΩ Ug ₂ = 250 V Rk = 500 Ω Ui = 8 Veff	la = 24 lg ₂ = 7	S = 2,5 mA/V Ri = 70 kΩ W ₀ = 2,8 W dtot = 10%	$W_{g_2} = 6 W$ $W_{g_2} = 3 W$ $I_k = 30 mA$ $R_{g_1} = 1 M\Omega$ $U_{fk} = 50 V$	62	N
RGN 354 für Einweg-Gleichrichter	Uf = 4 V If = 0,3 A direkt				Utr = 250 Veff I ₀ = 25 mA	56	N
RGN 1064 für Zweiweg-Gleichrichter	Uf = 4 V If = 1 A direkt	Utr = 2×500 Veff Utr = 2×400 Veff Utr = 2×300 Veff			$I_0 = 60 \text{ mA}$ $I_0 = 75 \text{ mA}$ $I_0 = 100 \text{ mA}$ $U \text{tr} = 2 \times 500 \text{ Veff}$	57	N
				•			

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockei- Nr.	Bemer- kung
UABC 80 für AM/FM- Demodulatorstufen, NF-Verstärker	Uf = 28,5 V If = 0,1 A indirekt	Triodentell, statische Ua = 170 V Ug = -1,55 V Ua = 100 V Ug = -1 V Diotentell, statische [Ud ₁ = 10 V Ud ₂ = 5 V Ud ₃ = 5 V	la = 1,5	S = 1,65 mA/V $\mu = 70$ $Ri = 42 \text{ k}\Omega$ S = 1,4 mA/V $\mu = 70$ $Ri = 50 \text{ k}\Omega$ $Ri_{1} \approx 5 \text{ k}\Omega$ $Ri_{2} \approx 200 \Omega$ $Ri_{3} \approx 200 \Omega$	WaT = 1 W lk = 5 mA Rg = 3 MΩ Rg = 22 MΩ ¹) Ufk = 150 V Ud ₁ p=Ud ₂ p=Ud ₃ p = 350 V ld ₁ = 1 mA ld ₂ =ld ₃ =10 mA ¹) Rk = 0	28	EV
UAF 42 für regelbare HF- und NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 12,6 V If = 0,1 A indirekt	$\begin{array}{lll} \text{HF-Verstärker:} \\ \text{Ub=Ua} = 170 \text{ V} \\ \text{Ug}_3 = 0 \text{ V} \\ \text{Rg}_2 = 56 \text{ k}\Omega \\ \text{Rk} = 310 \Omega \\ \text{Ug}_1 = -2 \text{ V} \\ \text{Ug}_1 = -28 \text{ V} \\ \end{array}$ $\begin{array}{lll} \text{NF-Verstärker:} \\ \text{Ub} = 170 \text{ V} \\ \text{Ra} = 0.22 \text{ M}\Omega \\ \text{Rg}^* = 0.7 \text{ M}\Omega \\ \text{Ug}_3 = 0 \text{ V} \\ \text{Rg}_2 = 0.82 \text{ M}\Omega \\ \text{Rk} = 2.7 \text{ k}\Omega \\ \text{Ug}_1 = -1.8 \text{ V} \\ \text{Ug}_1 = -20 \text{ V} \\ \end{array}$	la = 5 lg ₂ = 1,5	$C_{ag_1} < 0.002 \text{ pF}$ $S = 2 \text{ mA/V}$ $R_i = 0.9 \text{ M}\Omega$ $r_{aeq} = 7.5 \text{ k}\Omega$ $S = 20 \mu\text{A/V}$ $R_i > 10 \text{ M}\Omega$ $S = 80 \mu\text{A/V}$	Wa = 2 W Wg ₂ = 0,3 W Ik = 10 mA Rg ₁ = 3 MΩ Ufk = 150 V Udp = 200 V Id = 0,8 mA	4	

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UBC 41 für NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 14 V It = 0,1 A indirekt	NF-Verstärker: Ub = 170 V Ra = 0,22 MΩ Rg* = 0,68 MΩ Rg = 1 MΩ Rk = 5,6 kΩ Ub = 170 V Ra = 0,22 MΩ Rg* = 0,68 MΩ Rg* = 0,68 MΩ Rg = 22 MΩ Statische Daten: Ua = 170 V Ug = -1,55 V	la = 0,28 la = 0,46	$U_0 = 5 \text{ Veff}$ $g = 44$ $d \cot = 1,3\%$ $U_0 = 5 \text{ Veff}$ $g = 48$ $d \cot = 1,1\%$ $S = 1,65 \text{ mA/V}$ $\mu = 70$ $R_1 = 42 \text{ k}\Omega$	Wa = 0,5 W k = 5 m A Rg = 3 MΩ Rg = 22 MΩ¹) Ufk = 150 V Udp = 200 V dd = 0,8 m A	6	E
UBF 11 für regelbare HF- und NF-Verstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 20 V If = 0,1 A Indirekt	HF-Verstärker: Ub=Ua=200 V Rg ₂ = 70 kΩ Rk = 300 Ω Ug ₁ = -2 V Ug ₁ = -42 V NF-Verstärker: Ub = 200 V Ra = 0,2 MΩ Rg ₂ = 0,7 MΩ Rk = 2,4 kΩ Ug ₁ = -2,2 V Ug ₁ = -20 V	la = 5, 1, 7 la = 0,66 g ₂ = 0,24	$Cag_1 < 0.002 pF$ $S = 1.8 \text{ mA/V}$ $Ri = 1.5 \text{ M}\Omega$ $S = 18 \mu\text{A/V}$ $Ri > 10 \text{ M}\Omega$ $dtot = 1.2\%$ $g = 6.7$ $dtot = 3.4\%$	Wa = 1,5 W Wg ₂ = 0,3 W Ik = 10 mA Rg ₁ = 3 MΩ Ufk = 125 V Udp = 200 V Id = 0,8 mA	64	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
1b	Uf = 17 V If = 0,1 A	HF-Verstärker: Ub=Ua = 170 V Ug ₃ = 0 V Rg ₂ = 47 kΩ Rk = 295 Ω Ug ₁ = -2 V Ug ₁ = -26,5 V	la = 5 lg ₂ = 1,75	$Cag_1 < 0,0025 pF$ $S = 2,2 mA/V$ $Ri = 0,9 M\Omega$ $raeq = 6,2 k\Omega$ $S = 22 \mu A/V$ $Ri > 10 M\Omega$	Wa = 1,5 W Wg ₂ = 0,3 W lk = 10 mA Rg ₁ = 3 MΩ		
	indirekt F		$l_{g_2} = 0.56$ $l_{g_2} = 0.56$ $l_{g_2} = 0.19$		Rg ₁ = 22 MΩ ¹) Ufk = 150 V Ud inv p = 350 V Id = 0,8 mA 1) Rk = 0 Vorspg. nur durch Rg1	21	E
für Endverstärker, HF-Gleichrichter	Uf = 55 V If = 0,1 A indirekt	Klasse A: Ua = 200 V Ra = 3,5 kΩ Ug ₂ = 200 V Rk = 175 Ω Ui = 7 Veff Ua = 185 V Ra = 3 kΩ Ug ₂ = 185 V Rk = 140 Ω Ui = 7 Veff	la = 55 lg ₂ = 11 lg ₂ = 11,3	$S = 8.5 \text{ mA/V}$ $R_i = 20 \text{ k}\Omega$ $W_0 = 5.2 \text{ W}$ $dtot = 10\%$ $S = 8.8 \text{ mA/V}$ $R_i = 23 \text{ k}\Omega$ $W_0 = 5 \text{ W}$ $dtot = 10\%$	Wa = 11 W Wg ₂ = 2,5 W lk = 70 mA Rg ₁ = 1 MΩ Ufk = 150 V Udp = 200 V ld = 0,8 mA	43	N

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UBL 21 für Endverstärker, HF-Gleichrichter, AM-Demodulator- stufen	Uf = 55 V If = 0,1 A indirekt	Klasse A: Ua = 180 V Ra = 3 kΩ Ug ₂ = 180 V Rk = 140 Ω Ui = 6,2 Veff Klasse AB, 2 Röhren in Ua = 200 V Raa' = 4 kΩ Ug ₂ = 200 V Rk = 116 Ω Ui = 12 Veff Ui = 0 V	a = 61 g ₂ = 10 Gegentakt: a = 2 × 56 g ₂ = 2 × 14 a = 2 × 50 g ₂ = 2 × 7,8	$S = 9 \text{ mA/V}$ $R_i = 22 \text{ k}\Omega$ $W_0 = 4.8 \text{ W}$ $dtot = 10\%$ $dtot = 3.9\%$	Wa = 11 W Wg ₂ = 1,9 W Ik = 75 mA Rg ₁ = 1 MΩ Ufk = 150 V Udp = 200 V Id = 0,8 mA	15	N
UC 92 für UKW-Verstärker und selbstschwingende Mischstufen	Uf = 9,5 V If = 0,1 A Indirekt	Ua = 250 V Ug = -2 V Ua = 170 V Ug = -1 V Ua = 100 V Ug = -1 V	la = 10 la = 8,5 la = 3	$C_{ag} \sim 1.5 \text{ pF}$ $C_{ak} \sim 0.24 \text{ pF}$ $S = 5 \text{ mA/V}$ $\mu = 60$ $S = 5.5 \text{ mA/V}$ $\mu = 66$ $S = 3.5 \text{ mA/V}$ $\mu = 58$	Wa = 2,5 W k = 15 mA Rg = 1 MΩ Ufk = 90 V	41	EV

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UCH 5 für regelbare Mischstufen HF-Verstärker, NF-Verstärker	Uf = 20 V If = 0,1 A Indirekt	Mischstufe: $\begin{array}{llll} \text{Mischstufe:} \\ \text{Ub=UaH} = 200 \text{ V} \\ \text{Rg}_2 + \text{g}_4 = 15.5 \text{ k}\Omega \\ \text{RaT} &= 20 \text{ k}\Omega \\ \text{RgT} + \text{g}_3 &= 50 \text{ k}\Omega^1) \\ \text{Rk} &= 150 \Omega \\ \text{Ug}_1 &= -2 \text{ V} \\ \text{Ug}_1 &= -28 \text{ V} \\ \end{array}$ $\begin{array}{llll} \text{Heptodenteil als HF-V} \\ \text{Ub=UaH} = 200 \text{ V} \\ \text{Ug}_3 &= 0 \text{ V} \\ \text{Rg}_2 + \text{g}_4 &= 30 \text{ k}\Omega \\ \text{Ug}_1 &= -2 \text{ V} \\ \end{array}$ $\begin{array}{llll} \text{Ug}_1 &= -36 \text{ V} \\ \end{array}$ $\begin{array}{llll} \text{Triodenteil als NF-Ve} \\ \text{Ub} &= 200 \text{ V} \\ \text{RaT} &= 0.1 \text{ M}\Omega \\ \text{UgT} &= -2 \text{ V} \\ \end{array}$	laH = 5,2 lg ₂ +g ₄ =3,5	$C_{ag_1} < 0.002 \text{ pF}$ $C(gT+g_3)g_1 < 0.25 \text{ pF}$ $S_c = 750 \mu\text{A/V}$ $R_i = 1 \text{ M}\Omega$ $r_{aeq} = 55 \text{ k}\Omega$ $S_c = 7.5 \mu\text{A/V}$ $R_i > 10 \text{ M}\Omega$ $r_{aeq} = 9 \text{ k}\Omega$ $S = 2.2 \mu\text{A/V}$ $r_{aeq} = 9 \text{ k}\Omega$ $S = 2.2 \mu\text{A/V}$ $r_{aeq} = 9 \text{ k}\Omega$	WaH = 1,5 W Wg ₂ +g ₄ = 1 W WaT = 0,5 W Ik = 15 mA RgT+g ₃ = 3 MΩ ¹) Rg ₁ = 3 MΩ Ufk = 150 V	55	N
UCH 11 für regelbare Mischstufen	Uf = 20 V If = 0,1 A indirekt		aH = 2,5 g ₂ +g ₄ = 3 aT = 2,8	$Cag_1 < 0,001 pF$ $C(gT+g_8)g_1 < 0,2 pF$ $Sc = 750 \mu A/V$ $Ri = 1 M\Omega$ $Sc = 7,5 \mu A/V$ $Ri > 0,3 M\Omega$	WaH = 1,5 W Wg ₂ +g ₄ = 0,5 W WaT = 1 W Ik = 15 mA RgT+g ₃ = 0,1 MΩ ¹) Rg ₁ = 3 MΩ Ufk = 200 V 1) RgT+g3 an Katode angeschiossen.	65	N

.

	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
für regelbare Mischstufen, HF-Verstärker, NF-Verstärker	Ut = 20 V If = 0,1 A indirekt	Mischstufe: $Ub=UaH=200 \text{ V}$ $Rg_2+g_4=15,5k\Omega$ $RaT=20 \text{ k}\Omega$ $RgT+g_3=50k\Omega^1)$ $Rk=150 \Omega$ $Ug_1=-2 \text{ V}$ $Ug_1=-28 \text{ V}$ Heptodenteil als HF-V $Ub=UaH=200 \text{ V}$ $Ug_3=0 \text{ V}$ $Rg_2+g_4=30 \text{ k}\Omega$ $Ug_1=-2 \text{ V}$ $Ug_1=-2 \text{ V}$ $Ug_1=-36 \text{ V}$ Triodenteil als NF-Ve	aH = 5,2 g ₂ +g ₄ =3,5	$C_{ag_1} < 0.002 \text{ pF}$ $C_{(gT+g_3)g_1} < 0.35 \text{ pF}$ $S_c = 750 \mu \text{A/V}$ $R_i = 1 \text{ M}\Omega$ $r_{aeq} = 55 \text{ k}\Omega$ $S_c = 7.5 \mu \text{A/V}$ $R_i > 10 \text{ M}\Omega$ $r_{aeq} = 9 \text{ k}\Omega$ $S_c = 2.2 \mu \text{A/V}$ $r_{aeq} = 9 \text{ k}\Omega$ $r_{aeq} = 9 \text{ k}\Omega$ $r_{aeq} = 9 \text{ k}\Omega$	$W_{aH} = 1.5 W$ $W_{g_2+g_4} = 1 W$ $W_{aT} = 0.5 W$ $J_k = 15 mA$ $R_{gT+g_3} = 3 M\Omega^1$) $R_{g_1} = 3 M\Omega$ $U_{fk} = 150 V$	16	N
UCH 42 für regelbare Mischstufen	Uf = 14 V If = 0,1 A indirekt	$\begin{array}{lll} U_{\rm b} &=& 200 \text{ V} \\ R_{\rm a}T &=& 0,1 \text{ M}\Omega \\ U_{\rm g}T &=& -2 \text{ V} \\ \end{array}$ $\begin{array}{lll} U_{\rm b}=U_{\rm a}=170 \text{ V} \\ R_{\rm 1} &=& 18 \text{ k}\Omega \\ R_{\rm 2} &=& 27 \text{ k}\Omega \\ R_{\rm a}T &=& 10 \text{ k}\Omega \\ U_{\rm osc}(gT+g_{\rm 3})=8 \text{ Veff} \\ R_{\rm g}T+g_{\rm 3} &=& 22 \text{ k}\Omega^{\rm 1}) \\ R_{\rm k} &=& 180 \Omega \\ U_{\rm g_1} &=& -1,85 \text{ V} \\ U_{\rm g_1} &=& -25 \text{ V} \\ \end{array}$	laT = 1,5	$U_0 = 7.5 \text{ Veft}$ $g = 10.5$ $d \cot = 2.8\%$ $Cag_1 < 0.1 \text{ pF}$ $C(gT+g_3)g_1 < 0.35 \text{ pF}$ $Sc = 670 \mu \text{A/V}$ $Ri > 1 \text{ M}Ω$ $raeq = 65 \text{ k}Ω$ $Sc = 6.7 \mu \text{A/V}$ $Ri > 5 \text{ M}Ω$	1) RgT+g3 an Katode angeschlossen. WaH = 1,5 W Wg ₂ +g ₄ = 0,3 W WaT = 0,8 W IkH = 7 mA IkT = 6 mA RgT+g ₃ = 3 MΩ ¹) Rg ₁ = 3 MΩ Ufk = 150 V 1) RgT+g3 an Katode	8	E

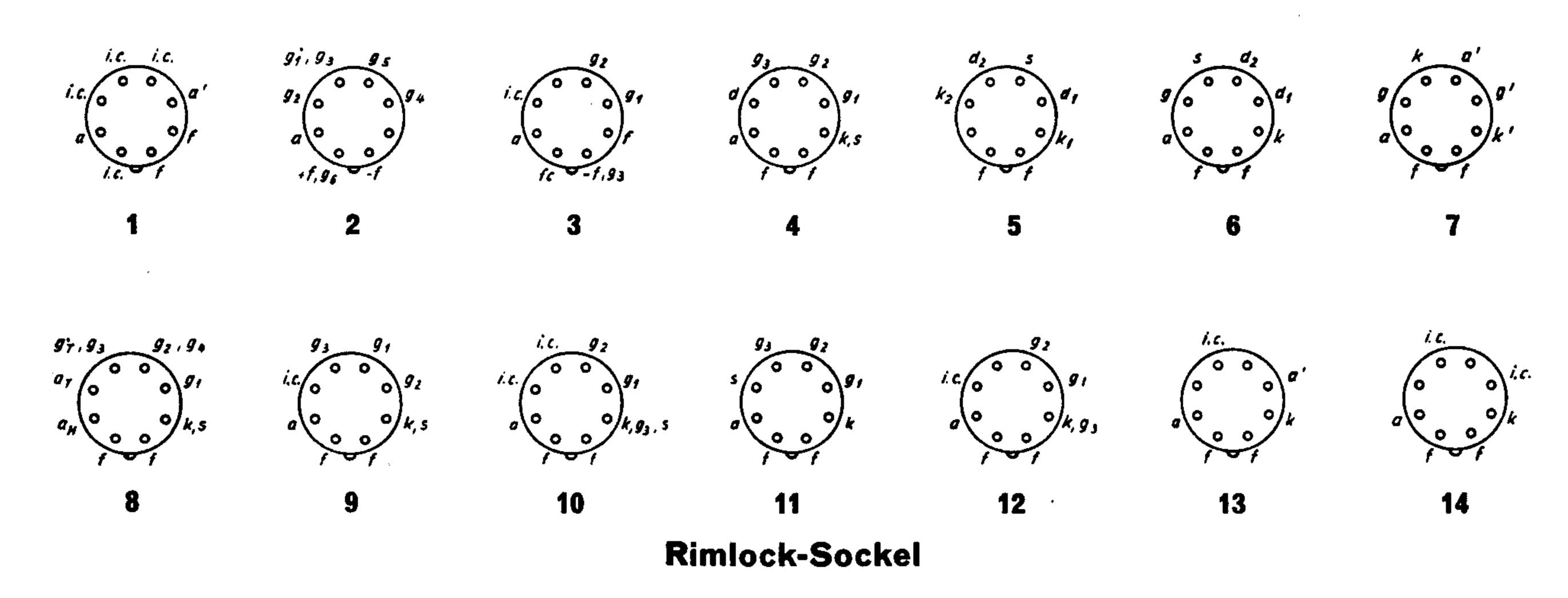
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UCH 43	Technische Date auf Grund konstr gendem NF-Vers	ruktiver Maßnahmen besc	onders geeignet	für Schaltungen mit di	rekt nachfol-	8	E
UCH 81 für regelbare Mischstufen, HF-Verstärker, selbstschwingende UKW-Mischstufen, NF-Verstärker	Uf = 19 V If = 0,1 A indirekt	Mischstufe: $Ub=UaH=170 \text{ V}$ $Rg_2+g_4=12 \text{ k}\Omega$ $RaT=15 \text{ k}\Omega$ $RgT+g_3=47 \text{ k}\Omega^1)$ $Ug_1=-2 \text{ V}$ $Ug_1=-24 \text{ V}$ Heptodentell als HF-V $Ub=UaH=170 \text{ V}$ $Ug_3=0 \text{ V}$ $Rg_2+g_4=18 \text{ k}\Omega$ $Ug_1=-2 \text{ V}$	200 μA	$Cag_1 < 0.006 pF$ $CaHaT = 0.22 pF$ $Sc = 725 μA/V$ $Ri = 0.9 MΩ$ $faeq = 70 kΩ$ $Sc = 7.25 μA/V$ $Ri > 3 MΩ$ $Sc = 3.8 kΩ$ $Sc = 23 μA/V$	WaT = 0,8 W lkH = 12,5 mA lkT = 6,5 mA Rg ₃ = 3 MΩ Rg ₁ = 3 MΩ RgT = 3 MΩ Ufk = 100 V	23	EV
UCL 11 für NF- und Endverstärker	Uf = 60 V If = 0,1 A indirekt	Triodenteil, statische $U_a = 200 \text{ V}$ $U_g = -2 \text{ V}$ Tetrodenteil, Klasse A $U_a = 200 \text{ V}$ $R_a = 4.5 \text{ k}\Omega$ $U_{g_2} = 200 \text{ V}$ $U_{g_1} = -8.5 \text{ V}$ $U_{g_1} = 5 \text{ Veff}$	la = 2	S = 2.1 mA/V $\mu = 65$ $R_i = 30 \text{ k}\Omega$ S = 9 mA/V $R_i = 18 \text{ k}\Omega$ $W_0 = 4 \text{ W}$ dtot = 10%	$WaT = 0.6 W$ $WaQ = 9 W$ $Wg_2 = 1.5 W$ $Ik = 75 mA$ $RgT = 1.7 M\Omega$ $Rg_1Q = 0.7 M\Omega$ $Ufk = 125 V$	66	N

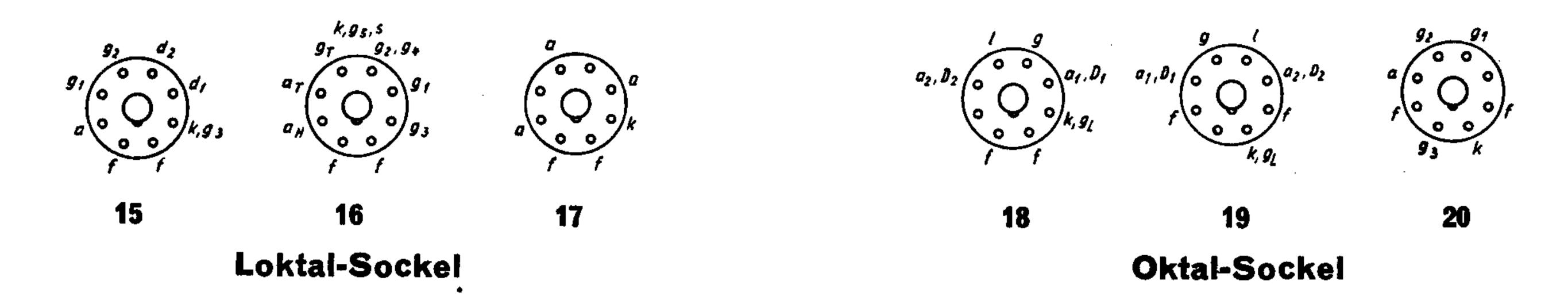
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UF 5 für regelbare HF- und NF-Verstärker	Uf = 12,6 V If = 0,1 A indirekt	HF-Verstärker: Ub = Ua = 200 V Ug ₃ = 0 V Rg ₂ = 60 kΩ Rk = 325 Ω Ug ₁ = -2,5 V Ug ₁ = -39 V NF-Verstärker: Ub = 200 V Ra = 0,2 MΩ Rg ₂ = 0,8 MΩ Rg ₂ = 0,8 MΩ Ug ₁ = -2 V Ug ₁ = -2 V Ug ₁ = -20 V	$l_a = 6$ $l_{g_2} = 0.65$ $l_{g_2} = 0.17$	$Cag_1 < 0,002 pF$ $S = 2,2 mA/V$ $Ri = 1,2 M\Omega$ $S = 5,5 \mu A/V$ $Ri > 10 M\Omega$ $Cag_1 < 0,002 pF$ $Cag_$	Wa = 2 W Wg ₂ = 0,3 W Ik = 10 mA Rg ₁ = 3 MΩ Ufk = 150 V	45	N
UF 6 für HF- und NF-Verstärker	Uf = 12,6 V If = 0,1 A indirekt	HF-Verstärker: $U_a = 200 \text{ V}$ $U_{g_3} = 0 \text{ V}$ $U_{g_2} = 100 \text{ V}$ $U_{g_1} = -2 \text{ V}$ NF-Verstärker: $U_b = 200 \text{ V}$ $R_a = 0,22 \text{ M}\Omega$ $U_{g_3} = 0 \text{ V}$ $U_{g_3} = 0 \text{ V}$ $U_{g_3} = 0 \text{ N}\Omega$	$l_{a} = 3$ $l_{g_{2}} = 1$ $l_{g_{2}} = 0.5$ $l_{g_{2}} = 0.18$	$C_{ag_1} < 0,003 \text{ pF}$ $S = 1,8 \text{ mA/V}$ $R_i = 2 \text{ M}\Omega$ $U_0 = 8 \text{ Veff}$ $g = 136$ $d_{tot} = 1,7\%$	Wa = 1 W Wg ₂ = 0,3 W Ik = 6 mA Rg ₁ = 3 MΩ Ufk = 150 V	45	N

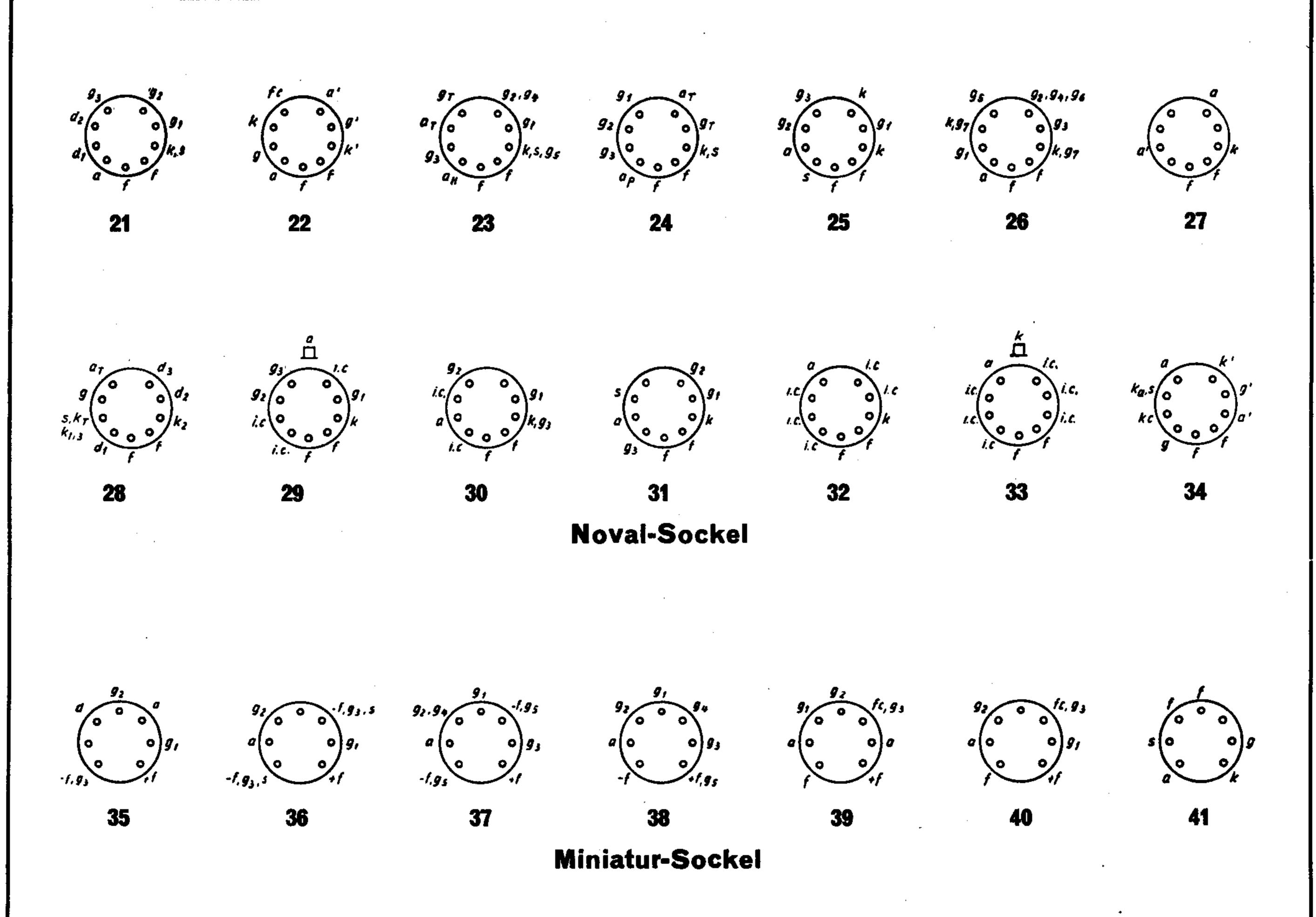
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UF 41 für regelbare HF-Verstärker	Uf = 12,6 V If = 0,1 A indirekt	$\begin{array}{lll} U_{\rm b} &=& 170 \text{ V} \\ R_{\rm g_2} &=& 40 \text{ k}\Omega \\ R_{\rm k} &=& 325 \Omega \\ U_{\rm g_1} &=& -2,5 \text{ V} \\ U_{\rm g_1} &=& -28 \text{ V} \\ \end{array}$ $\begin{array}{lll} U_{\rm b} &=& 100 \text{ V} \\ R_{\rm g_2} &=& 40 \text{ k}\Omega \\ R_{\rm k} &=& 325 \Omega \\ U_{\rm g_1} &=& -1,4 \text{ V} \\ U_{\rm g_1} &=& -17 \text{ V} \\ \end{array}$	a = 6 g ₂ = 1,75 la = 3,3 g ₂ = 1	$Cag_i < 0.002 pF$ $S = 2.2 mA/V$ $R_i = 1 MΩ$ $raeq = 6.5 kΩ$ $S = 22 μA/V$ $R_i > 10 MΩ$ $S = 1.9 mA/V$ $R_i = 0.8 MΩ$ $raeq = 5.5 kΩ$ $S = 19 μA/V$ $R_i > 10 MΩ$	Wa = 2 W Wg ₂ = 0,3 W Ik = 10 mA Rg ₁ = 3 MΩ Ufk = 150 V	10	E
UF 42 für Breitband-Verstärker	Uf = 21 V If = 0,1 A indirekt	Ua = 170 V Ug ₃ = 0 V Ug ₂ = 170 V Ug ₁ = -2 V	la = 10 lg ₂ = 2,8	$Cag_1 < 0.006 pF$ $S = 8 mA/V$ $Ri = 0.3 M\Omega$ $raeq = 1.06 k\Omega$	$Wa = 2 W$ $Wg_2 = 0.5 W$ $Ik = 15 mA$ $Rg_1 = 1 M\Omega^1$ $Ufk = 150 V$ 1) Autom. Vorspg.	11	E
UF 43 für regelbare Breitband-Verstärker	Uf = 21 V If = 0,1 A Indirekt	$U_{g_3} = 0 V$ $R_{g_2} = 10 kΩ$ $R_k = 105 Ω$ $U_{g_1} = -2 V$ $U_{g_1} = -19 V$	la = 15 lg ₂ == 3,5	$Cag_1 < 0,006 pF$ $S = 6,3 mA/V$ $Ri = 0,3 M\Omega$ $raeq = 1,8 k\Omega$ $S = 63 \mu A/V$ $Ri > 10 M\Omega$	$W_{g_2} = 3,75 W$ $W_{g_2} = 0,7 W$ $I_k = 20 mA$ $R_{g_1} = 1 M\Omega$ $U_{fk} = 150 V$	11	E
UF 80 für HF-Verstärker, Breitband-Verstärker, selbstschwingende UKW-Mischstufen	Uf = 20 V If = 0,1 A indirekt	HF-Verstärker: Ua = 170 V Ug ₃ = 0 V Ug ₂ = 170 V Ug ₁ = -2 V	la = 10 lg ₃ = 2,5	$C_{ag_1} < 0.007 pF$ $S = 7.4 mA/V$ $R_i = 0.5 M\Omega$ $r_{aeq} = 1 k\Omega$ $r_{e} = 10 k\Omega$ $(\lambda = 6 m)$	$Wa = 2.5 W$ $Wg_2 = 0.7 W$ $Ik = 15 mA$ $Rg_1 = 1 M\Omega^1$) $Rg_1 = 0.5 M\Omega^2$) $Ufk = 150 V$ 1) Autom. Vorspg. 2) Feste Vorspg.	25	E

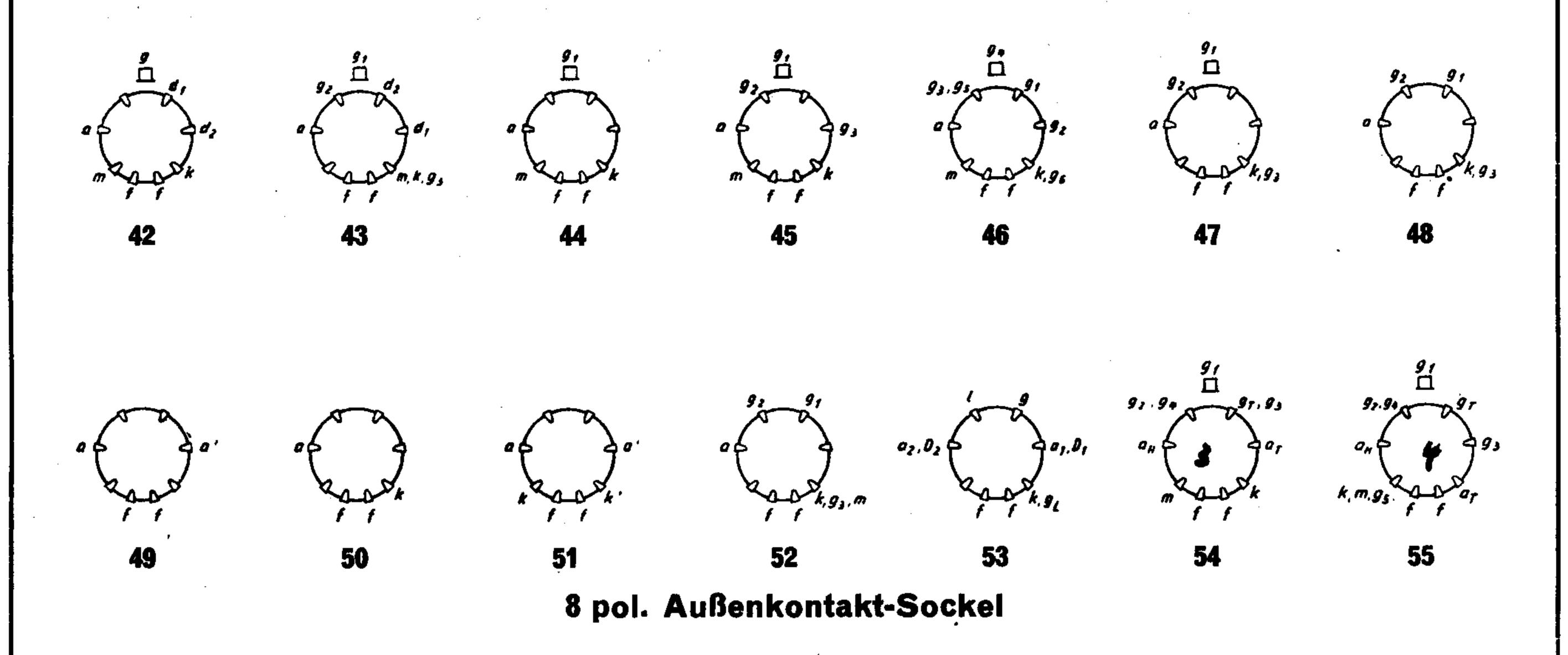
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
für für regelbare HF-Verstärker	Uf = ca.20V If = 0,1 A indirekt	$U_{b}=U_{a}=170 \text{ V}$ $U_{g_{3}}=0 \text{ V}$ $R_{g_{2}}=25 \text{ k}\Omega$ $U_{g_{1}}=-2 \text{ V}$ $U_{g_{1}}=-22,4 \text{ V}$	la = 10 lg ₂ = 2,5	$Cag_1 < 0.007 pF$ $S = 6.1 mA/V$ $Ri > 200 kΩ$ $raeq = 1.6 kΩ$ $S = 61 μA/V$	Wa = 2,5 W Wg ₂ = 0,65 W lk = 15 mA Rg ₁ = 3 MΩ Ufk = 150 V	- 25	EV
UL 2 für Endverstärker	Uf = 35 V If = 0,1 A indirekt	Klasse A: Ua = 200 V Ra = 10 kΩ Ug ₂ = 200 V Rk = 230 Ω Ui = 3 Veff	la = 20 lg ₂ = 3	$S = 5.8 \text{ mA/V}$ $R_i = 60 \text{ k}\Omega$ $W_0 = 1.6 \text{ W}$ $dtot = 10\%$	Wa = 4 W Wg ₂ = 0,7 W Ik = 28 mA Rg ₁ = 1 MΩ Ufk = 150 V	48	N
UL 41 für Endverstärker	Uf = 45 V If = 0,1 A indirekt	Klasse A: Ua = 170 V Ra = 3 k Ω Ug ₂ = 170 V Rk = 165 Ω Ui = 6 Veff Klasse AB, 2 Röhren Ua = 170 V Raa' = 4 k Ω Ug ₂ = 170 V Rk = 100 Ω Ui = 9,3 Veff Ui = 0 V	la =2×49	$S = 9.6 \text{ mA/V}$ $R_i = 20 \text{ k}\Omega$ $W_0 = 4.25 \text{ W}$ $dtot = 10\%$ $dtot = 4\%$	Wa = 9 W Wg ₂ = 1,75 W Ik = 75 mA Rg ₁ = 1 MΩ ¹) Ufik = 150 V	12	E
Abstimmanzeiger (2 Systeme mit verschiedener Empfindlichkeit)	Uf = 12,6 V If = 0,1 A indirekt	$U_{b}=U_{1}=200 \text{ V}$ $R_{a_{1}}+D_{1}=R_{a_{2}}+D_{2}$ $= 1 \text{ M}\Omega$ $U_{g}=0 \text{ V}$ $U_{g}=-4.2 \text{ V}$ $U_{g}=-12.5 \text{ V}$	1 = 1,4 1 = 1,8 1 = 2	$a_1 = 90^{\circ}$ $a_2 = 90^{\circ}$ $a_1 = 5^{\circ}$ $a_2 = 40^{\circ}$ $a_1 = 0^{\circ}$ $a_2 = 5^{\circ}$	Rg = 3 MΩ Ufk = 150 V	18	E

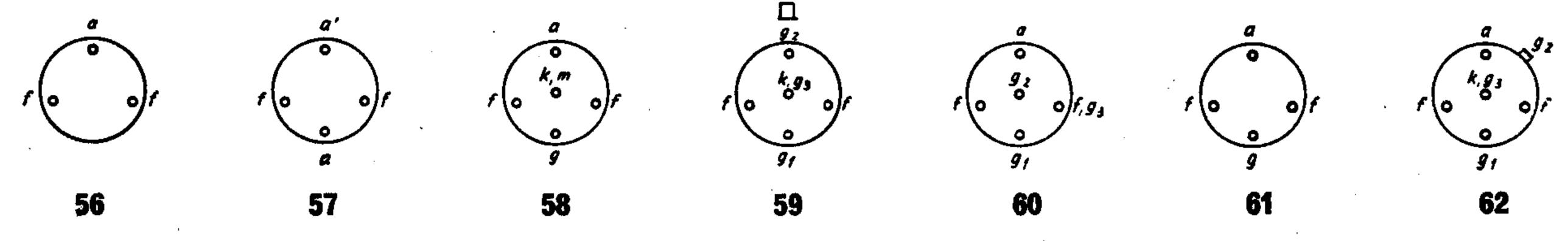
Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
für FM-Demodulator- stufen und Begrenzer, NF-Verstärker	Uf = 12,6 V If = 0,1 A Indirekt	FM-Demodulatorstufe Ub = 170 V Ra = 0,33 M Ω Ug ₂ + ₄ + ₆ = 20 V Ug ₃ =Ug ₅ = -4 V Ug ₁ = 0 V φ (Uig ₃ -Uig ₅) = 90 ° Uig ₃ = 12 Veff Uig ₅ = 12 Veff NF-Verstärker: Ub = 170 V Ra = 0,47 M Ω Ug ₂ + ₃ + ₄ + ₅ + ₆ = ca. 20 V Rg ₁ = 10 M Ω ¹)	la = 0,28 lg ₅ = 30 μA lg ₈ = 90 μA lg ₂ + ₄ + ₆ = 1,5	$Cg_3g_5 < 0.4 pF$ $Ri = 5 M\Omega$ $U_0 = 15 Veii$	$Wa = 0.1 W$ $Wg_2+_4+_6=0.1 W$ $Ik = 3 mA$ $Rg_5 = 3 M\Omega$ $Rg_3 = 3 M\Omega$ $Rg_1 = 1 M\Omega$ $Rg_1 = 22 M\Omega^1$ $Ufk = 150 V$	26	Ë
UY 3 für Einweg-Gleichrichter	Uf = 50 V If = 0,1 A indirekt				Utr = 250 Veff I ₀ = 140 mA Cfilt = 60 μF Ufk = 500 V	50	N
UY 11 für Elnweg-Gleichrichter	Uf = 50 V If = 0,1 A indirekt	Utr = 250 Veff Utr = 170 Veff Utr = 127 Veff			I_0 = 140 mA R_t = min. 175 Ω I_0 = 140 mA R_t = min. 100 Ω I_0 = 140 mA R_t = 0 Ω Cfilt = 60 μ F für alle Spannungen Utr = 250 Veff Ufkp = 550 V	71	N

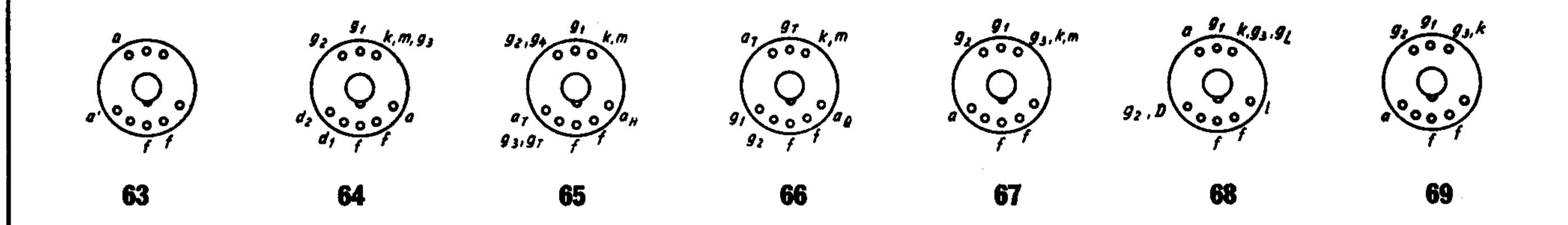

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
UY 21 für Einweg-Gleichrichter	Uf = 50 V If = 0,1 A Indirekt	Utr = 250 Veff			l ₀ = 140 mA Rt = min. 175 Ω		N
		Utr = 170 Veff			$I_0 = 140 \text{ mA}$ $Rt = \text{min. } 100 \Omega$		
		Utr = 127 Veff			$I_0 = 140 \text{ mA}$ $Rt = 0 \Omega$		
				.,,	$C_{\rm filt} = 60~\mu{\rm F}$ für alle Spannungen		
		· : !			Utr = 250 Veff Ufkp = 550 V		
UY 41 für Einweg-Gleichrichter	Uf = 31 V If = 0,1 A indirekt	Utr = 250 Veff			$I_0 = 100 \text{ mA}$ $Rt = \min. 210 \Omega$	14	E
		Utr = 220 Veff		***************************************	$I_0 = 100 \text{ mA}$ $Rt = \text{min. } 160 \Omega$		
		U tr = 127 V eff			$I_0 = 100 \text{ mA}$ $Rt = 0 \Omega$		
					Cfilt = 50μ F für alle Spannungen		
					Utr = 250 Veff Ufkp = 550 V		

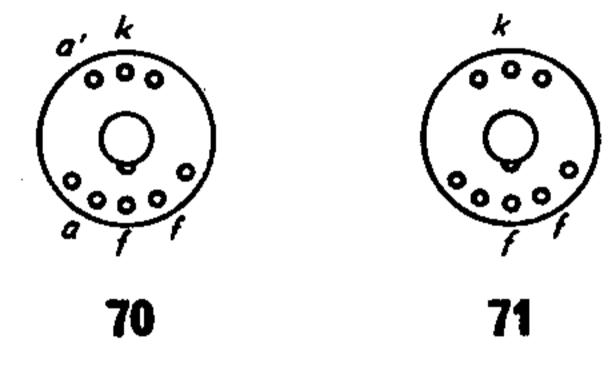

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
VC 1 für NF-Verstärker	Uf = 55 V If = 50 mA indirekt	Statische Daten: Ua = 200 V Ug = -2 V	a == 6	S = 3 mA/V μ = 44 Ri = 14,5 kΩ	Wa = 1,5 W Rg ₁ = 1,5 MΩ Ufk = 175 V	44	N
VLC 11 für Endverstärker	Uf = 90 V If = 50 mA indirekt	Triodenteil, statische Ua = 100 V Ug ₁ = -0,5 V	Daten:	S = 2,4 mA/V μ = 59	WaQ = 4 W WaT = 0,8 W	66	N
		Tetrodenteil, Klasse λ Ua = 200 V Ra = 17 k Ω Ug ₂ = 200 V Rk = 300 Ω Ui = 2,7 Veff	la = 12 lg ₂ = 1,2	S = 5 mA/V Ri = 70 kΩ W ₀ = 1,2 W dtot = 10%	$Wg_{2} = 0.5 W$ $Rg_{1}Q = 1.5 M\Omega$ $RgT = 1 M\Omega$ $Ufk = 150 V$		
VF 7 für HF- und NF-Verstärker	Uf = 55 V If = 50 mA indirekt	HF-Verstärker: Ua = 200 V Ug ₃ = 0 V Ug ₂ = 100 V Rk = 500 Ω	la = 3 lg ₂ = 1	$C_{ag_1} = 0,003 \text{ pF}$ $S = 2,1 \text{ mA/V}$ $R_i = 2 \text{ M}\Omega$	$W_{g_2} = 1 W$ $W_{g_2} = 0.3 W$ $R_{g_1} = 1.5 M\Omega$ $U_{fk} = 175 V$	45	N
			·		·	·	

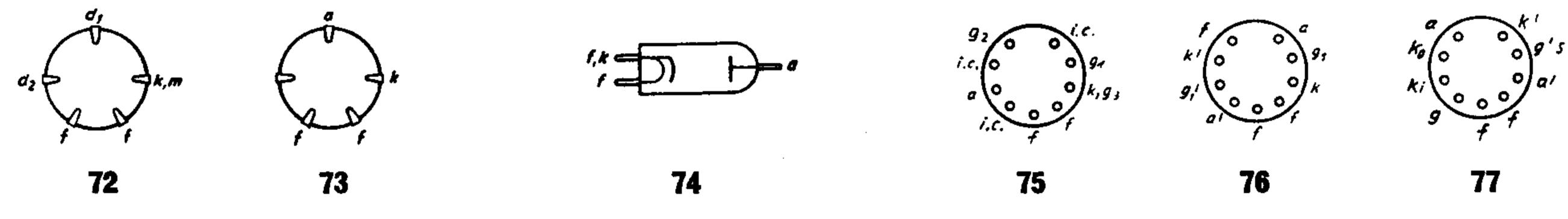

Type und Anwendung	Heizung	Spannungen Widerstände	Ströme (mA)	Kenndaten	Grenzdaten	Sockel- Nr.	Bemer- kung
VL 1 für Endverstärker	Uf = 55 V If = 50 mA indirekt	Klasse A: Ua = 200 V Ra = 8 $k\Omega$ Ug ₂ = 200 V Rk = 500 Ω Ui = 10 Veff	la = 25 lg ₂ = 3,5	$S = 2.2 \text{ mA/V}$ $R_i = 50 \text{ k}\Omega$ $W_0 = 1.6 \text{ W}$ $dtot = 10\%$	$W_{a} = 5 W$ $W_{g_{2}} = 1 W$ $R_{g_{1}} = 0.7 M\Omega$ $U_{fk} = 175 V$	47	N
VY 1 für Einweg-Gleichrichter	Uf = 55 V If = 50 mA indirekt				Utr = 250 Veff I ₀ = 60 mA Ufk = 550 V	50	N
VY 2 für Einweg-Gleichrichter	Ut = 30 V If = 50 mA indirekt				Utr = 250 Veff I ₀ = 20 mA Ufk = 550 V	73	N
•		•					


Sockelschaltungen


(Sockel von unten gesehen)







5 Stift Europa-Sockel

Stahlröhren-Sockel

5 pol. Außenkontakt-Sockei